Вторично чувствующие органы чувств это

5)Понятие о первично- и вторично чувствующих органов чувств.

Все рецепторы делятся на первично-чувствующие и вторично-чувствующие. К первым относятся рецепторы обоняния, тактильные и проприорецепторы. Они различаются тем, что преобразование энергии раздражения в энергию нервного импульса происходит у них в первом нейроне сенсорной системы. К вторично-чувствующим относятся рецепторы вкуса, зрения, слуха, вестибулярного аппарата. У них между раздражителем и первым нейроном находится специализированная рецепторная клетка, не генерирующая импульсы. Таким образом, первый нейрон возбуждается не непосредственно, а через рецепторную (не нервную) клетку.

6Морфологическаие особенности и клеточный состав миокарда Миокард (средняя оболочка сердца) — многотканевая оболочка, состоящая из поперчнополосатой сердечной мышечной ткани, межмышечной рыхлой соединительной ткани, многочисленных сосудов и капилляров, а также нервных элементов. Основной структурой является сердечная мышечная ткань, в свою очередь состоящая из клеток, формирующих и проводящих нервные импульсы, и клеток рабочего миокарда, обеспечивающих сокращение сердца (кардиомиоцитов). Среди клеток, формирующих и проводяших импульсы, в проводящей системе сердца различают три вида: Р-клетки (клетки-пейсмекеры), промежуточные клетки и клетки (волокна) Пуркиня.

7)Отличия толстой и тонкой кожи.

Эпителий тонкой кожи отличается от эпителия толстой тем, что содержит меньшее количество слоев. В ней отсутствует блестящий слой, а роговой намного тоньше, чем в толстой коже. Тонкая кожа покрывает все тело, кроме ладоней и подошв. Ее толщина колеблется от 0,5 мм на веках до 5 мм на спине. Граница эпителия и дермы в тонкой коже неровная, но наличие соединительнотканных сосочков, врастающих в эпителий, не придает его поверхности вид линий, как это происходит на коже пальцев. Неровности поверхности возникают здесь из-за наличия слегка вдавленных устьев волосяных фолликулов.

8)Клеточный состав и функции эпителия воздухоподводящих путей. Однослойный многорядный реснитчатый эпителий. Он выстилает воздухоносные пути и имеет энтодермальное происхождение. В нём клетки разной высоты, и ядра располагаются на разных уровнях. Клетки располагаются пластом. Под базальной мембраной лежит рыхлая соединительная ткань с кровеносными сосудами, а в эпителиальном пласте преобладают высокодифференцированные реснитчатые клетки. У них узкое основание, широкая верхушка. На верхушке располагаются мерцательные реснички. Они полностью погружены в слизь. Между реснитчатыми клетками находятся бокаловидные — это одноклеточные слизистые железы. Они вырабатывают слизистый секрет на поверхность эпителия. Имеются эндокринные клетки. Между ними располагаются короткие и длинные вставочные клетки, это стволовые клетки, малодифференцированные, за счёт них идёт пролиферация клеток. Мерцательные реснички совершают колебательные движения и перемещают слизистую плёнку по воздухоносным путям к внешней среде.

9)Тимусзависимые зоны лимфатических узлов и селезёнки. Их значение. Непосредственно вдоль артерий белой пульпы в наружной оболочке их стенки формируются скопления лимфоцитов. В этих образованиях накапливаются T-лимфоциты.Специфическими элементами микроокружения этой зоны являются интердигитирующие клетки. В зоне глубокой коры (паракортикальной зоне) лимфоциты располагаются плотно, довольно равномерно. Эти зоны рассматриваются как тимусзависимые зоны, в которых T-лимфоциты проходят антигензависимую пролиферацию и дифференцировку.

Источник

Органы чувств: как они работают

» data-image-caption=»» data-medium-file=»https://unclinic.ru/wp-content/uploads/2019/05/organy-chuvstv.jpg» data-large-file=»https://unclinic.ru/wp-content/uploads/2019/05/organy-chuvstv.jpg» title=»Органы чувств: как они работают»>

Алена Герасимова (Dalles) Разработчик сайта, редактор

  • Запись опубликована: 26.05.2019
  • Время чтения: 1 mins read

Каждую секунду человек принимает из внешнего мира огромные потоки сигналов с самой разнообразной информацией. Приему этой информации и правильным реагированием на каждое происходящее событие предназначены органы чувств человека.

Как мы чувствуем

Органы чувств можно назвать приемными устройствами. Они первыми «узнают все новости» и тотчас же посылают в мозг единственно понятную для него информацию – нервные импульсы, получаемые от рецепторов раздражения того или иного органа чувств.

Мозг, реагируя на полученные сведения, приказывает человеку исполнять то или иное действие: например, человек переходит улицу только на зеленый свет светофора; идет на кухню при ощущении запаха гари закипевшего кофе; при звонке мобильного телефона, включает его и говорит с позвонившим.

Человеческие органы чувств всегда начеку, они регулируют наши действия и обеспечивают их точность.

Приемных устройств – рецепторов – огромное количество, но каждый из них «специализируется» только на одном виде внешнего раздражения, обеспечивая при этом фантастическую чувствительность.

Только 2-3 кванта света уже вызывают зрительные ощущения, донесения о звуке посылаются в мозг при смещении барабанной перепонки всего лишь на десятую часть диаметра атома водорода, всего 2-3 молекулы пахнущего вещества достаточны для ощущения запаха.

Глаза — орган зрения

Все органы чувств удивительно сложны по своей конструкции, но поистине шедевром «приборостроения» природы можно назвать глаз человека. Четырьмя пятыми наших сведений о мире мы обязаны своим глазам.

Оптическая система глаза преломляет лучи света так, что на внутренней оболочке глазного яблока — сетчатке фокусируются изображения предметов. А в сетчатке расположены светочувствительные клетки. 7 миллионов колбочек, собранных ближе к ее центру, трудятся днем, они ответственны за цветовое зрение.

130 миллионов палочек разбросаны в основном по периферии сетчатки и работают в ночное время, создавая черно-белое изображение. Будь в глазу только палочки, мир казался бы нам серым, лишенным всяких красок.

Глазное яблоко неутомимо движется. На чем бы мы ни остановили свой взор, и к какой бы картине его ни приковали, задержка взгляда — явление кажущееся. На самом деле глаза все время скачкообразно перемещается из стороны в сторону, то вверх, то вниз.

В результате изображение на сетчатке непрерывно смещается и таким образом достигается раздражение новых колбочек или палочек. Без этого рецепторы быстро привыкли бы к однообразному световому потоку и перестали бы информировать мозг об окружающих нас предметах. Остановись глаз хоть на минуту, и вскоре в комнате «растают» стены, «исчезнут» столы, шкафы и даже зажженная люстра.

Пять органов чувств

» data-medium-file=»https://unclinic.ru/wp-content/uploads/2019/05/pjat-organov-chuvstv-893×600.jpg» data-large-file=»https://unclinic.ru/wp-content/uploads/2019/05/pjat-organov-chuvstv-1024×688.jpg» loading=»lazy» src=»https://unclinic.ru/wp-content/uploads/2019/05/pjat-organov-chuvstv-893×600.jpg» alt=»Пять органов чувств» width=»893″ height=»600″ srcset=»https://unclinic.ru/wp-content/uploads/2019/05/pjat-organov-chuvstv-893×600.jpg 893w, https://unclinic.ru/wp-content/uploads/2019/05/pjat-organov-chuvstv-768×516.jpg 768w, https://unclinic.ru/wp-content/uploads/2019/05/pjat-organov-chuvstv-1024×688.jpg 1024w, https://unclinic.ru/wp-content/uploads/2019/05/pjat-organov-chuvstv.jpg 1792w» sizes=»(max-width: 893px) 100vw, 893px» title=»Органы чувств: как они работают»> Пять органов чувств

Уши — орган слуха

Как известно, форпост органа слуха — барабанная перепонка. Колебания воздуха, которые создают звуковые волны, колеблют и эту перепонку. От нее эстафету принимают конструкции внутреннего уха и доставляют ее к рецепторным окончаниям слухового нерва. Отсюда уже не колебания, а нервные импульсы поступают в головной мозг.

Человеческое ухо улавливает звуковые колебания в интервале от 20 до 20 тысяч в секунду. Наилучшая слышимость лежит в диапазоне голоса человека, то есть в пределах от 200 до 3200 гц (колебаний в секунду). Удивительное соответствие органов слуха и голосового аппарата позволяет людям общаться, понимать друг друга.

Читайте также:  Что такое тактильный орган чувств

Человек слышит меньшее число звуков, чем животные. Собака, например, свободно разбирается в звуках с частотой в 40 тысяч герц, кошка — даже в 60 тысяч, а у летучих мышей и дельфинов «звуковой потолок» доходит до 150 тысяч герц. Им, видимо, природа не кажется такой тихой, как нам.

Но зато в своем более узком диапазоне человек умеет гораздо полнее любого животного исследовать, различать и отделять друг от друга всевозможные звуки и звукосочетания. Именно благодаря этой способности слухового аппарата человека стало возможным возникновение и развитие речи.

Дистанционные и контактные органы чувств

Глаз и ухо реагируют на сигналы, которые идут издали, преодолевая разные расстояния, из-за этого слух и зрение называют дистанционными чувствами. Контактными органами чувств называются чувства, воспринимающие раздражение только при контакте с его источником. Это, конечно, относится к осязанию.

Кожа — благодаря ей мы чувствуем боль

Осязательные рецепторы располагаются по всей кожной поверхности тела. Более всего их на пальцах и на ладони. Взяв, например, рукой какой-либо незнакомый предмет, мы даже с закрытыми глазами способны точно описать его форму, определить характер поверхности, вес. Об этом известили нас рецепторы прикосновения и давления.

Любая деформация кожной поверхности заставляет их тотчас же посылать нервные импульсы в головной мозг. Сборщики хлопка, например, умеют на ощупь определять сорт хлопка и степень его зрелости; мукомолы, потрогав зерно и муку, судят о сорте пшеницы.

Кожа исполняет роль термометров, причем одни из них раздражаются только теплом, другие — только холодом. Интересно, что каждый из этих чувствительных приборов имеет свою территорию. Холодовые «термометры» располагаются в коже на глубине 0,17 миллиметра, а тепловые глубже на 0,3 миллиметра. Информирование о внешней температуре жизненно обязательно для регулирования постоянства температуры тела.

Кроме того, в коже заложены болевые рецепторы, не случайно названные «стражниками безопасности». Они начинают работать при действии любого сверхсильного агента, который способен привести к разрушению. Возникшая боль мгновенно обращает внимание на возможную опасность, мобилизует на борьбу скрытые резервы.

Именно «болевые импульсы» заставляют отдернуть руку, при прикосновении к чему то очень горячему или колючему.

Язык — спасибо за вкус

По контактному принципу действуют и вкусовые рецепторы. Скопления вкусовых клеток — вкусовые почки в большом количестве расположены на языке, в миндалинах, на глотке, небе.

Известно, что у передней части языка предназначение реагировать на сладкое, задняя его поверхность воспринимает по преимуществу горькое, кончик языка и боковые стороны — «любители» соленого, а ощущение кислого появляется, когда продукты попадают на боковые поверхности языка. Поэтому, пробуя незнакомую пищу лишь самым кончиком языка, можно не распознать неприятный нам горький вкус.

Во рту располагаются наряду с вкусовыми рецепторами и рецепторы на прикосновение, и давление, а также терморецепторы, усиливающие вкус.

Поэтому температура пищи может изменять вкусовые ощущения. Обжигающий чай или кипящий бульон, вкус их при этой температуре не ощущается. Но стоит им только слегка остыть, как те же самые чай и бульон оказываются более вкусными, – один приятно сладкий, другой – наваристый и соленый. Происходит это потому, что более благоприятной для вкусового ощущения является температура в пределах 15—35 градусов.

Определенное значение для выявления вкуса имеют и пищевые контрасты. Не случайно многие находят нужным слегка присаливать сладкую дыню или мороженое. А физиологи установили, что очень слабый раствор поваренной соли покажется соленым только в том случае, если на другую сторону языка нанести немного сладкого.

Нос — обоняние — мир запахов

Как часто мы говорим: «Вкусно пахнет». Потому что со вкусом неразрывно связано обоняние. Эти рецепторы расположены в слизистой оболочке верхних носовых ходов в двух желобовидных ямках. Общая площадь чувствительной зоны не превышает 5 квадратных сантиметров, но в ней насчитываются миллионы обонятельных клеток.

С помощью электронного микроскопа удалось установить, что на поверхности каждой из них содержится от 6 до 12 подвижных ресничек. Это в десятки раз увеличивает обонятельную площадь.

Для возникновения ощущения запаха необходимо, чтобы присутствующее во вдыхаемом воздухе ароматное вещество растворилось в жидкой слизистой пленке, укрывающей обонятельные клетки. Долей секунды достаточно, чтобы это произошло, и тогда чувствительные нервные окончания, уловив молекулы пахучего вещества, извещают мозг, и возникает ощущение запаха.

Это очень коротко об органах чувств, классифицированных Аристотелем более двух тысяч лет назад, но до настоящего времени представляющих огромный интерес для всестороннего изучения. По сложности они намного превосходят многочисленные приборы, сконструированные человеком.

Изучение биологических «аппаратов», воспринимающих сигналы внешнего мира, важно не только для медицины, но и для возможного использования их принципа действия в технике.

Источник

Сенсорные системы. Органы чувств

Часть первая. Общая характеристика и классификация; Орган зрения, светопреломляющий аппарат глаза.

Под сенсорной системой понимают совокупность органов и структур, обеспечивающих:

  • восприятие различных раздражителей, действующих на организм;
  • преобразование и кодирование внешней энергии в нервный импульс,
  • передачу по нервным путям в подкорковые и корковые центры, где происходят
  • анализ поступившей информации и формирование субъективных ощущений.

Сенсорная система — это анализаторы внешней и внутренней среды, которые обеспечивают адаптацию организма к конкретным условиям.

В каждом анализаторе различают 3 части:

  • периферическую (рецепторную),
  • промежуточную и
  • центральную.

Периферическая часть представлена органами, в которых находятся специализированные рецепторные клетки. По специфичности восприятия стимулов различают механорецепторы (рецепторы органа слуха, равновесия, тактильные рецепторы кожи, рецепторы аппарата движения, барорецепторы), хеморецепторы (органов вкуса, обоняния, сосудистые интерорецепторы), фоторецепторы (сетчатки глаза), терморецепторы (кожи, внутренних органов), болевые рецепторы.

Рецепторные клетки периферического отдела анализаторов являются составной частью органов чувств (например, глаз, ухо и др.), а также органов, выполняющих в основном несенсорные функции (т.к. нос, язык и др.).

Промежуточная (проводниковая) часть сенсорной системы представляет собой цепь вставочных нейронов, по которым нервный импульс от рецепторных клеток передается к корковым центрам. На этом пути могут быть промежуточные, подкорковые, центры, где происходят обработка афферентной информации и переключение ее на эфферентные центры.

Центральная часть сенсорной системы представлена участками коры больших полушарий. В центре осуществляются анализ поступившей информации, формирование субъективных ощущений. Здесь информация может быть заложена в долговременную память или переключена на эфферентные пути.

Классификация органов чувств

В зависимости от строения и функции рецепторной части органы чувств делятся на три типа.

К первому типу относятся органы чувств, у которых рецепторами являются специализированные нейросенсорные клетки, преобразующие внешнюю энергию в нервный импульс. К таким «первичным» органам чувств относятся орган зрения и орган обоняния.

Читайте также:  Что такое стресс курпатов

Ко второму типу относятся органы чувств, у которых рецепторами являются не нервные, а эпителиальные клетки (сенсоэпителиальные). От них преобразованное раздражение передается дендритам чувствительных нейронов, которые воспринимают возбуждение сенсоэпителиальных клеток и порождают нервный импульс. К таким «вторичночувствующим» органам относятся органы слуха, равновесия, вкуса.

К третьему типу с невыраженной анатомически органной формой относятся проприоцептивная (т.е скелетно-мышечная), кожная и висцеральная сенсорные системы. Периферические отделы в них представлены различными инкапсулированными и неинкапсулированными рецепторами.

Зрительная сенсорная система. Орган зрения

Глаз (ophthalmos oculus) — орган зрения, представляющий собой периферическую часть зрительного анализатора, в котором рецепторную функцию выполняют нейроны сетчатой оболочки.

Развитие. Глаз развивается из различных эмбриональных зачатков. Сетчатка и зрительный нерв формируются из нервной трубки путем образования сначала так называемых глазных пузырьков, сохраняющих связь с эмбриональным мозгом при помощи полых глазных стебельков. Передняя часть глазного пузырька впячивается внутрь его полости, благодаря чему он приобретает форму двухстенного глазного бокала. Часть эктодермы, расположенная напротив отверстия глазного бокала, утолщается (т.н. плакоды), инвагинирует и отшнуровывается от кожной эктодермы, давая начало зачатку хрусталика. Эктодерма претерпевает эти изменения под влиянием индукторов дифференцировок, образующихся в глазном пузырьке. Первоначально хрусталик имеет вид полого эпителиального пузырька. Затем клетки эпителия его задней стенки удлиняются и превращаются в так называемые хрусталиковые волокна, заполняющие полость пузырька. В процессе развития внутренняя стенка глазного бокала преобразуется в сетчатку, а наружная — в пигментный слой сетчатки. Из нейробластов внутренней стенки глазного бокала образуются колбочковые и палочковые фоторецепторные (нейросенсорные) клетки и другие нейроны сетчатки. Развитие фоторецепторных элементов тесно связано с развитием пигментного слоя сетчатки. При этом диски будущих колбочковых и палочковых клеток развиваются сначала одинаково — путем образования складок плазматической мембраны и ресничек, затем часть эмбриональных колбочковых клеток претерпевает дополнительную дифференцировку, приводящую к замыканию дисков, отрыву их от плазмолеммы и превращению в палочковые клетки. Образование дисков индуцируется витамином А. В его отсутствие они не развиваются, а у взрослых при продолжительной недостаточности витамина А диски разрушаются.

Стебелек глазного бокала пронизывается аксонами образующихся в сетчатке ганглиозных клеток. Эти аксоны и формируют зрительный нерв, направляющийся в мозг. Из окружающей глазной бокал мезенхимы формируются сосудистая оболочка и склера. В передней части глаза склера переходит в покрытую многослойным плоским эпителием прозрачную роговицу. Сосуды и мезенхима, проникающие на ранних стадиях развития внутрь глазного бокала, совместно с эмбриональной сетчаткой принимают участие в образовании стекловидного тела и радужки. Мышца радужки, суживающая зрачок, развивается из краевого утолщения наружного и внутреннего листков глазного бокала, а мышца, расширяющая зрачок, — из наружного листка. Таким образом, обе мышцы радужки по своему происхождению являются нейральными.

Строение глаза

Глазное яблоко (bulbus oculi) состоит из трех оболочек: фиброзной, сосудистой и сетчатой.

Наружная (фиброзная) оболочка глазного яблока (tunica fibrosa bulbi), к которой прикрепляются наружные мышцы глаза, обеспечивает защитную функцию. В ней различают передний прозрачный отдел — роговицу и задний непрозрачный отдел — склеру.

Средняя (сосудистая) оболочка (tunica vasculosa bulbi, uvea) выполняет основную роль в обменных процессах. Она имеет три части: часть радужки, часть цилиарного тела и собственно сосудистую — хориодею (choriodea).

Внутренняя, чувствительная оболочка глаза — сетчатка (tunica interna sensoria bulbi, retina) — сенсорная, рецепторная часть зрительного анализатора, в которой происходят под воздействием света фотохимические превращения зрительных пигментов, фототрансдукция, изменение биоэлектрической активности нейронов и передача информации о внешнем мире в подкорковые и корковые зрительные центры.

Оболочки глаза и их производные формируют три функциональных аппарата: светопреломляющий, или диоптрический (роговица, жидкость передней и задней камер глаза, хрусталик и стекловидное тело); аккомодационный (радужка, ресничное тело с ресничными отростками); рецепторный аппарат (сетчатка).

Наружная фиброзная оболочка — склера (sclera) — образована плотной оформленной волокнистой соединительной тканью, содержащей пучки коллагеновых волокон, между которыми находятся уплощенной формы фибробласты и отдельные эластические волокна. Пучки коллагеновых волокон, истончаясь, переходят в собственное вещество роговицы.

Толщина склеры в заднем отделе вокруг зрительного нерва наибольшая — 1,2— 1,5 мм, кпереди склера истончается до 0,6 мм у экватора и до 0,3—0,4 мм позади места прикрепления прямых мышц. В области диска зрительного нерва большая часть (⅔) истонченной фиброзной оболочки сливается с твердой оболочкой зрительного нерва, а истонченные внутренние слои образуют решетчатую пластинку (lamina cribrosa). При повышении внутриглазного давления фиброзная оболочка истончается, что является причиной некоторых патологических изменений.

Светопреломляющий аппарат глаза

Светопреломляющий (диоптрический) аппарат глаза включает роговицу, хрусталик, стекловидное тело, жидкости передней и задней камер глаза.

Роговица (cornea) занимает 1/16 площади фиброзной оболочки глаза и, выполняя защитную функцию, отличается высокой оптической гомогенностью, пропускает и преломляет световые лучи и является составной частью светопреломляющего аппарата глаза. Пластинки коллагеновых фибрилл, из которых состоит основная часть роговицы, имеют правильное расположение, одинаковый показатель преломления с нервными ветвями и межуточной субстанцией, что вместе с химическим составом определяет ее прозрачность.

Толщина роговицы 0,8—0,9 мкм в центре и 1,1 мкм на периферии, радиус кривизны 7,8 мкм, показатель преломления — 1,37, сила преломления 40 дптр.

В роговице микроскопически выделяют 5 слоев: 1) передний многослойный плоский неороговевающий эпителий; 2) переднюю пограничную мембрану (боуменову оболочку); 3) собственное вещество роговицы; 4) заднюю пограничную эластическую мембрану (десцеметову оболочку); 5) задний эпителий («эндотелий»).

Клетки переднего эпителия роговицы плотно прилегают друг к другу, располагаются в 5 слоев, соединены десмосомами. Базальный слой расположен на боуменовой оболочке. В патологических условиях (при недостаточно прочной связи базального слоя и боуменовой оболочки) происходит отслойка от базального слоя боуменовой оболочки. Клетки базального слоя эпителия (герминативный, зародышевый слой) имеют призматическую форму и овальное ядро, расположенное близко к вершине клетки. К базальному слою примыкают 2—3 слоя многогранных клеток. Их вытянутые в стороны отростки внедряются между соседними клетками эпителия, подобно крыльям (крылатые, или шиповидные, клетки). Ядра крылатых клеток округлые. Два поверхностных эпителиальных слоя состоят из резко уплощенных клеток, не имеют признаков ороговения. Удлиненные узкие ядра клеток наружных слоев эпителия располагаются параллельно поверхности роговицы. В эпителии имеются многочисленные свободные нервные окончания, обусловливающие высокую тактильную чувствительность роговицы. Поверхность роговицы увлажнена секретом слезных и конъюнктивальных желез, который защищает глаз от вредных физико-химических воздействий внешнего мира, бактерий. Эпителий роговицы отличается высокой регенерационной способностью. Под эпителием роговицы расположена бесструктурная передняя пограничная мембрана (lamina limitans interna) — боуменова оболочка толщиной 6—9 мкм. Она представляет собой модифицированную гиалинизированную часть стромы, трудноотличима от последней и имеет тот же состав, что и собственное вещество роговицы. Граница между боуменовой оболочкой и эпителием хорошо выражена, а слияние боуменовой оболочки со стромой происходит незаметно.

Читайте также:  Настроение стихотворения туча пушкина

Собственное вещество роговицы (substantia propria cornea) — строма — состоит из гомогенных тонких соединительнотканных пластинок, взаимопересекающихся под углом, но правильно чередующихся и расположенных параллельно поверхности роговицы. В пластинках и между ними располагаются отростчатые плоские клетки, являющиеся разновидностями фибробластов. Пластинки состоят из параллельно расположенных пучков коллагеновых фибрилл диаметром 0,3—0,6 мкм (по 1000 в каждой пластинке). Клетки и фибриллы погружены в аморфное вещество, богатое гликозаминогликанами (в основном кератинсульфатами), которое обеспечивает прозрачность собственного вещества роговицы. В области радужно-роговичного угла оно продолжается в непрозрачную наружную оболочку глаза — склеру. Собственное вещество роговицы не имеет кровеносных сосудов.

Задняя пограничная пластинка (lamina limitans posterior) — десцеметова оболочка — толщиной 5—10 мкм, представлена коллагеновыми волокнами диаметром 10 нм, погруженными в аморфное вещество. Это стекловидная, сильно преломляющая свет мембрана. Она состоит из 2 слоев: наружного — эластического, внутреннего — кутикулярного и является производным клеток заднего эпителия («эндотелия»). Характерными особенностями десцеметовой оболочки являются прочность, резистентность к химическим агентам и расплавляющему действию гнойного экссудата при язвах роговицы.

При гибели передних слоев десметова оболочка выпячивается в виде прозрачного пузырька (десцеметоцеле). На периферии она утолщается, и у людей пожилого возраста на этом месте могут формироваться округлые бородавчатые образования — тельца Гассаля—Генле.

У лимба десцеметова оболочка, истончаясь и разволокняясь, переходит в трабекулы склеры.

«Эндотелий роговицы», или задний эпителий (epithelium posterius), состоит из одного слоя плоских полигональных клеток. Он защищает строму роговицы от воздействия влаги передней камеры. Ядра клеток «эндотелия» округлые или слегка овальные, их ось располагается параллельно поверхности роговицы. Клетки «эндотелия» нередко содержат вакуоли. На периферии «эндотелий» переходит непосредственно на волокна трабекулярной сети, образуя наружный покров каждого трабекулярного волокна, вытягиваясь в длину.

В регуляции водного обмена играют роль боуменова и десцеметова оболочки, а процессы обмена в роговице обеспечиваются диффузией питательных веществ из передней камеры глаза за счет краевой петлистой сети роговицы, многочисленными концевыми капиллярными ветвями, образующими густое перилимбальное сплетение.

Лимфатическая система роговицы формируется из узких лимфатических щелей, сообщающихся с ресничным венозным сплетением. Роговица отличается высокой чувствительностью, что объясняется наличием в ней нервных окончаний.

Длинные цилиарные нервы, представляя ветви назоцилиарного нерва, отходящего от первой ветви тройничного нерва, на периферии роговицы проникают в ее толщу, теряют миелин на некотором расстоянии от лимба, делясь дихотомически. Нервные ветви образуют следующие сплетения: в собственном веществе роговицы, претерминальное и под боуменовой оболочкой — терминальное, суббазальное (сплетение Райзера).

При воспалительных процессах кровеносные капилляры и клетки (лейкоциты, макрофаги и др.) проникают из области лимба в собственное вещество роговицы, что приводит к ее помутнению и ороговению, образованию бельма.

Передняя камера глаза образована роговицей (наружная стенка) и радужной оболочкой (задняя стенка), в области зрачка — передней капсулой хрусталика. На крайней ее периферии в углу передней камеры имеется камерный, или радужно-роговичный, угол (spatia anguli iridocornealis) с небольшим участком цилиарного тела. Камерный (еще называемый фильтрационный) угол граничит с дренажным аппаратом — шлеммовым каналом. Состояние камерного угла играет большую роль в обмене внутриглазной жидкости и в изменении внутриглазного давления. Соответственно вершине угла в склере проходит кольцевидно располагающийся желобок (sulcus sclerae interims). Задний край желобка несколько утолщен и образует склеральный валик, сформированный за счет круговых волокон склеры (заднее пограничное кольцо Швальбе). Склеральный валик служит местом прикрепления поддерживающей связки цилиарного тела и радужной оболочки — трабекулярного аппарата, заполняющего переднюю часть склерального желобка. В задней части он прикрывает шлеммов канал.

Трабекулярный аппарат, ранее ошибочно называвшийся гребенчатой связкой, состоит из 2 частей: склерокорнеальной (lig. sclerocorneale), занимающей большую часть трабекулярного аппарата, и второй, более нежной, — увеальной части, которая расположена с внутренней стороны и является собственно гребенчатой связкой (lig. pectinatum). Склерокорнеальный отдел трабекулярного аппарата прикрепляется к склеральной шпоре, частично сливается с цилиарной мышцей (мышца Брюкке). Склерокорнеальная часть трабекулярного аппарата состоит из сети переплетающихся трабекул, имеющих сложную структуру. В центре каждой трабекулы, представляющей плоский тонкий тяж, проходит коллагеновое волокно, обвитое, укрепленное эластическими волокнами и покрытое снаружи футляром из гомогенной стекловидной оболочки, являющейся продолжением десцеметовой оболочки. Между сложным переплетом корнеосклеральных волокон остаются многочисленные свободные щелевидные отверстия — фонтановы пространства, выстланные «эндотелием», переходящим с задней поверхности роговицы. Фонтановы пространства направлены к стенке венозного синуса склеры (sinus venosus sclerae) — шлеммова канала, расположенного в нижнем отделе склерального желобка шириной 0,25 см. В некоторых местах он разделяется на ряд канальцев, далее сливающихся в один ствол. Внутри шлеммов канал выстлан эндотелием. С его наружной стороны отходят широкие, иногда варикозно-расширенные сосуды, образующие сложную сеть анастомозов, от которых берут начало вены, отводящие камерную влагу в глубокое склеральное венозное сплетение.

Хрусталик (lens). Это прозрачная двояковыпуклая линза, форма которой меняется во время аккомодации глаза к видению близких или отдаленных объектов. Вместе с роговицей и стекловидным телом хрусталик составляет основную светопреломляющую среду. Радиус кривизны хрусталика варьирует от 6 до 10 мм, показатель преломления составляет 1,42. Хрусталик покрыт прозрачной капсулой толщиной 11—18 мкм. Его передняя стенка состоит из однослойного плоского эпителия хрусталика (epithelium lentis).

По направлению к экватору эпителиоциты становятся выше и образуют ростковую зону хрусталика. Эта зона «поставляет» в течение всей жизни новые клетки как на переднюю, так и на заднюю поверхность хрусталика. Новые эпителиоциты преобразуются в так называемые хрусталиковые волокна (fibrae lentis). Каждое волокно представляет собой прозрачную шестиугольную призму. В цитоплазме хрусталиковых волокон находится прозрачный белок — кристаллин. Волокна склеиваются друг с другом особым веществом, которое имеет такой же, как и они, коэффициент преломления. Центрально расположенные волокна теряют свои ядра, и, накладываясь друг на друга, образуют ядро хрусталика.

Хрусталик поддерживается в глазу с помощью волокон ресничного пояска (zonula ciliaris), образованного радиально расположенными пучками нерастяжимых волокон, прикрепленных с одной стороны к цилиарному телу, а с другой — к капсуле хрусталика, благодаря чему сокращение мышц цилиарного тела передается хрусталику. Знание закономерностей строения и гистофизиологии хрусталика позволило разработать методы создания искусственных хрусталиков и широко внедрить в клиническую практику их пересадку, что сделало возможным лечение больных с помутнением хрусталика (катаракта).

Стекловидное тело (corpus vitreum). Это прозрачная желеобразная масса, заполняющая полость между хрусталиком и сетчаткой. На фиксированных препаратах стекловидное тело имеет сетчатое строение. На периферии оно более плотное, чем в центре. Через стекловидное тело проходит канал — остаток эмбриональной сосудистой системы глаза — от сосочка сетчатки до задней поверхности хрусталика. Стекловидное тело содержит белок витреин и гиалуроновую кислоту. Показатель преломления стекловидного тела равен 1,33.

Источник

Оцените статью