Стресс у бактерий баснакьян

Ваш IP заблокирован

Убедитесь, что Вы не используете анонимайзеры/прокси/VPN или другие подобные средства (TOR, friGate, ZenMate и т.п.) для доступа к сайту.

Отправьте письмо на abuse[at]twirpx.club если Вы уверены, что эта блокировка ошибочна.

В письме укажите следующие сведения о блокировке:

Кроме того, пожалуйста, уточните:

  1. Каким Интернет-провайдером Вы пользуетесь?
  2. Какие плагины установлены в Вашем браузере?
  3. Проявляется ли проблема если отключить все плагины?
  4. Проявляется ли проблема в другим браузере?
  5. Какое программное обеспечение для организации VPN/прокси/анонимизации Вы обычно используете? Проявляется ли проблема если их отключить?
  6. Давно ли в последний раз проверяли компьютер на вирусы?

Your IP is blocked

Ensure that you do not use anonymizers/proxy/VPN or similar tools (TOR, friGate, ZenMate etc.) to access the website.

Contact abuse[at]twirpx.club if you sure this block is a mistake.

Attach following text in your email:

Please specify also:

  1. What Internet provider (ISP) do you use?
  2. What plugins and addons are installed to your browser?
  3. Is it still blocking if you disable all plugins installed to your browser?
  4. Is it still blocking if you use another browser?
  5. What software do you often use for VPN/proxy/anonymization? Is it still blocking if you disable it?
  6. How long ago have you checked your computer for viruses?

Источник

Кислотоустойчивость пропионовокислых бактерий

ИССЛЕДОВАНИЕ КИСЛОТНОГО СТРЕССА У ПРОПИОНОВОКИСЛЫХ БАКТЕРИЙ

Cохранение выживаемости пропионовокислых бактерий при низких значениях pH

В статье приведены результаты исследования устойчивости пропионовокислых бактерий к кислотному стрессу. Объект исследований выбран в связи с тем, что пропионовокислые бактерии рассматриваются как перспективные пробиотики, положительное влияние которых на здоровье человека общепризнано. Они подавляют активность патогенных микроорганизмов , образуют витамины группы В и в большом количестве витамин В12 , обладают антимутагенными свойствами , обеспечивают защиту от кишечных инфекций, некоторые штаммы вызывают торможение роста раковых клеток. Установлено, что наиболее высокой устойчивостью к кислотному стрессу обладают пропионовокислые бактерии P. freundenreichii subsp. freudenreichii 216 В-2. Выживаемость данного штамма через 1,5 ч инкубации при рН 2 составляет 64%, а наименее устойчивого штамма P. freudenreichii subsp. shermanii AC-2503 ‒ 36%. Высокая жизнеспособность пропионовокислых бактерий при низких значениях рН объясняется системой антиокислительной защиты, которая характеризуется реакцией толерантности к кислоте, что обеспечивает им повышенную выживаемость при низкой кислотности.

Введение

Любое стрессовое воздействие приводит к изменению функционирования бактериальной клетки. Во-первых, смена благоприятных условий на неблагоприятные вызывает переход популяции к несбалансированному росту, когда в результате изменения физико-химических условий меняются скорость реакции биохимического синтеза и, как следствие, соотношение макромолекулярных компонентов в клетках [1].

Во-вторых, сложная система, состоящая из множества сенсорных компонентов, генных регуляторных сетей, воспринимает сигналы среды и реагирует на них, запуская те или иные механизмы физиологической адаптации [2, 3]. Оба процесса в итоге приводят к тому, что множество клеток популяции сталкиваются с необходимостью выбора стратегии выживания.

Одна стратегия стрессовых ответов направлена на нейтрализацию и избежание стрессового удара. Такие ответы уникальны для каждого стресса. Стрессовые ответы такого типа называют специфическими. К ним относят голодовый, окислительный, кислотный стрессы.

Если воздействие стресса не удается избежать, то это может привести к повреждению молекул (ДНК, белки, клеточные покровы), поэтому существует вторая стратегия, направленная на предотвращение и репарацию повреждений клетки, что делает ее устойчивой не только к данному стрессу, но и к другим. Она называется глобальным стрессовым ответом. Глобальный стрессовый ответ возникает при летальных воздействиях [4, 6, 7].

Известно, что кислотность среды является важным фактором, определяющим биохимическую активность пропионовокислых бактерий. Концентрация ионов водорода в окружающей среде действует на микроорганизмы прямо (путем непосредственного воздействия Н+) или косвенно ‒ через влияние на стабильность макромолекул, равновесие электрических зарядов.

Пропионовокислые бактерии предпочитают расти в нейтральном диапазоне рН, но необходимо отметить, что эти бактерии подвергаются кислотному стрессу в желудочно-кишечном тракте. Кислотный стресс определяется как комбинированный биологический эффект низкого значения рН и слабых органических кислот, являющихся продуктами ферментации – ацетата, пропионата. Органические кислоты в своей протонированной, т.е. незаряженной форме при низких значениях рН могут диффундировать через клеточную мембрану, затем диссоциируя внутри клетки, и снижать цитозольный рН.

Следует отметить, что вопросы кислотного шока пропионовокислых бактерий изучены недостаточно и для их практического использования необходимы детальные исследования.

Материалы и методы исследования

Целью данной работы является исследование устойчивости пропионовокислых бактерий к кислотному стрессу. Экспериментальная часть исследований проводилась в лаборатории кафедры «Технология молочных продуктов. Товароведение и экспертиза товаров» ВСГУТУ.

Объектами исследований служили чистые культуры пробиотических бактерий: Propionibacterium freundenreichii subsp. shermanii АC 2503, P. freundenreichii subsp. freu-denreichii АC 2500, P. cyclohexanicum Kusano AC 2559, P. cyclohexanicum Kusano AC 2560, полученных из фонда Всероссийской коллекции микроорганизмов Института биохимии и физиологии микроорганизмов (г. Москва); P. Freundenreichii Ш85, P. Freundenreichii subsp. freudenreichii 216 В-2, Propionibacterium freundenreichii subsp. freudenreichii 216 II, полученные из Всероссийской коллекции промышленных микроо рганизмов ФГУП ГосНИИ «Генетика», P. fredenrichii subsp. shermanii KM 186, приобретенный из коллекции проф. Л.И. Воробьевой (МГУ).

Активизировали штаммы биотехнологическим методом, разработанным в Восточно-Сибирском государственном университете технологий и управления [5].

Питательной средой для наращивания биомассы пропионовокислых бактерий служила осветленная творожная сыворотка с добавлением ростовых факторов. После наращивания биомассы кислотность среды регулировали соляной кислотой.

Количественный учет клеток пропионовокислых бактерий проводили методом предельных разведений по ТУ 10-10-02-789-192-95 на среде ГМК.

Результаты исследования и их обсуждение

Среди штаммов пропионовокислых бактерий, полученных из различных источников, был проведен скрининг с целью изучения их устойчивости к кислой реакции среды и отбора наиболее перспективных штаммов. Полученные данные представлены в таблице.

Таблица Сводные данные кислотоустойчивости пробиотических микроорганизмов

Источник

Стресс у бактерий баснакьян

В живых системах существуют два основных типа использования кислорода клеткой (два пути окисления): оксидазный и оксигеназный. В первом случае в результате последовательных реакций ферментативного дегидрирования углеводов и жиров и последующего транспорта электронов в митохондриях на конечном пункте этого транспорта – ферменте цитохромоксидазе – происходит 4-электронное восстановление кислорода с образованием воды. Таким образом, в клетке синтезируется АТФ, а также вода и углекислота. Оксидазный путь не предусматривает включения кислорода в молекулу окисляемого субстрата.

Читайте также:  Не могу избавиться от депрессии что делать

Наряду с этим в клетках протекают реакции прямого присоединения кислорода к органическим веществам (оксигеназный путь). В оксигеназных реакциях полного 4-электронного восстановления кислорода не происходит, а наблюдается в основном неполное одноэлектронное его восстановление. Появление неспаренного электрона в молекуле кислорода придает ей свойства свободного (активного) радикала.

Окислительному стрессу подвержены все организмы с аэробным дыханием, поскольку активные формы кислорода (АФК) образуются вследствие нормального метаболизма. Большинство АФК, такие как пероксид водорода, супероксидный и гидроксильный радикалы, являются побочными продуктами в электронно-транспортной цепи в процессе окислительного фосфолирирования. В метаболических путях у E. coli встречается два пути расщепления перекиси водорода – с образованием кислорода и воды; окисление L-аскорбата до L-дегидроаскорбата. Помимо участия в метаболических путях, перекись водорода участвует в реакциях окислениях и реакциях Фентона, происходящих в клетках E. coli.

Развитие окислительного стресса в бактериях вовлекает в работу два ключевых регулона, контролируемые транскрипционными активаторами soxR и oxyR. Белки, экспрессия которых индуцируется системой SoxRS, действуют совместно и устраняют возможный ущерб от оксидативного стресса, используя механизмы удаления оксидантов (супероксид дисмутаза), репарацию ДНК (эндонуклеаза IV), восстановление окисленных металлов в проcтетических группах (флаводоксин и ферредоксин редуктаза) и системы НАДФН (глюкозо-6-фосфат дегидрогеназа), снижение проницаемости (micF) и экскрецию токсинов (порины). Активация генов регулона SoxRS увеличивает устойчивость клетки не только к супер-оксид генерирующим агентам, но и к органическим растворителям, а также оксиду азота (NO), который может генерироваться антибиотиками [1].

Особую группу веществ, способных оказывать значительное влияние на рост и жизнедеятельность бактерий, составляют антибиотики. Они представляют собой весьма разнородную группу химических соединений, впервые полученных у низших грибов, и в дальнейшем созданных синтетических аналогов. В большинстве случаев, антибиотики действуют на структурные компоненты бактериальных клеток, не затрагивая эукариотические клетки макроорганизма, в связи с чем данные препараты получили широкое распространение в медицине и ветеринарии.

Механизм действия антибиотиков различен для отдельных групп данных лекарственных средств, при этом одни обладают бактерицидным действием, что сопровождается нарушением структурной целостности клетки или значительным изменением обмена веществ у микроорганизмов, что приводит к их гибели. С другой стороны, существуют препараты, блокирующие процесс размножения бактерий, в результате чего их количество постепенно снижается из-за невозможности генераций. Это бактериостатический механизм действия антибиотиков. Точки приложения антибактериальных средств также различаются для каждой группы представителей, что дает возможность выбрать подходящий антибиотик для конкретного пациента. Основными точками воздействия антибиотиков на бактериальную клетку являются: нарушение синтеза клеточной стенки, нарушение синтеза различных белков, действие на синтез нуклеиновых кислот, входящих в состав ДНК микроорганизмов, действие на мембрану клетки [2].

Тем не менее, некоторыми исследователями было обнаружено, что некоторые антибиотики способны вызывать окислительный стресс у бактериальных клеток, что, наряду с прямым антимикробным действием препарата, усиливает бактерицидный эффект. Окислительный стресс происходит в клетках микроорганизмов под воздействием бактерицидных антибиотиков, при котором клетки производят молекулы химически реактивного кислорода, вызывающие повреждение ДНК и ферменты бактерий, а также мембрану, которая охватывает клетку.

Было установлено, что антибиотики действуют через АФК-зависимый (АФК – активные формы кислорода) механизм, в конечном итоге производящий гидроксильный радикал. Производство АФК является результатом всплеска клеточного дыхания, в результате экспозиции с антибиотиком сопровождающимся генерацией супероксид аниона. Это ведет к разрушению железо-серных кластеров и в присутствии ионов железа (II), с участием пероксида водорода ведёт к образованию гидроксильного радикала через реакцию Фентона, способного вызывать повреждения и гибель клетки. Было показано, что воздействие спектиномицина, хлорамфеникола, рифампицина вело к гибели клеток, однако при избыточной экспрессии каталазы или супероксиддисмутазы, а также в случае добавления экзогенных ферментов, снижало бактерицидную активность данных антибиотиков. Так же было показано, что в окислительный стресс, при воздействии аминогликозидов, вовлекаются оба регулона (soxRS и oxyR) и штаммы, имеющие мутации по каталазе и супероксиддисмутазе оказываются менее жизнеспособными по сравнению с дикими типами [3].

Таким образом, исследование механизмов действия антибиотиков через индукцию окислительного стресса в клетках открывает их новые, ранее не известные свойства, которые могут оказывать воздействие на клетки организма хозяина. Одним из подходов, по решению данного вопроса является использование как клеточных систем, способных детектировать развитие окислительного стресса, так и параллельная оценка с использованием безклеточных комплексов, основанных на окислении хромогенов и люминофоров.

Источник

Стресс у бактерий баснакьян

В настоящее время заметно увеличивается антропогенная нагрузка на прибрежные морские акватории. Наиболее сильный пресс на водные акватории отмечается в местах расположения крупных промышленных центров и портов. Для прибрежных вод дальневосточных морей, активно используемых в хозяйственной деятельности населения береговых районов, характерна самая высокая загрязненность одновременно всеми видами поллютантов (нефтеуглеводороды, фенолы, тяжелые металлы и т.д. Возрастающая антропогенная нагрузка на морскую среду вызывает значительные экологические изменения в прибрежных акваториях, принимающих наибольшее количество загрязняющих веществ [11]. Загрязнение водоемов химическими токсическими соединениями, в том числе с мутагенным и генотоксическим действием, влияет не только на состав микробных ценозов, но и приводит к изменениям в генетическом аппарате и соответственно эколого-физиологических свойств собственно микроорганизмов [10]. Вместе с тем экологические и эпидемиологические последствия этих изменений еще не определены, но можно предположить, что подобные приспособления могут сопровождаться приобретением микроорганизмами признаков, представляющих опасность для гидробионтов, наземных организмов и человека [13].

Рядом ученых были проведены исследования о влиянии природных факторов среды на изменение биологических свойств у бактерий рода Bacillus, E. coli и возбудителей сапрозоонозов [1; 9]. Например, доказано, что низкая температура изменяет биохимические, адгезивные свойства и вирулентность у патогенных бактерий, в частности у иерсиний, сальмонелл и листерий, обитающих в почве и воде (Сомов, Бузолева, 2004). Но в отношении сапрофитных микроорганизмов такие сведения отсутствуют в литературе.

Читайте также:  Как преодолеть депрессию самостоятельно 10 проверенных способов

Цель работы – изучить патогенные свойства бактерий рода Pseudomonas, выделенных из морской среды с разной степенью загрязнения.

Для достижения цели необходимо было собрать коллекцию морских псевдомонад на основании идентификации изолятов, полученных из вод акваторий с разной антропогенной нагрузкой. Полученные штаммы идентифицировали и проверяли с помощью определенных тестов на свойства, характеризующие факторы патогенности бактерий (ферментативные свойства в отношении органических субстратов, гемолитическую активность, адгезивные и инвазивные свойства, т.е. способность адгезировать на поверхности эпителия и проникать внутрь макроорганизма.

Материалы и методы

Для исследований были использованы штаммы бактерий рода Pseudomonas разных видов (Ps. cepacia – 133k, 160k; Ps. fluorescence – 1,8, 3,5, 3,6; Ps. malthophyla – 51; Ps. putida – 136k, 145k, 4, 130k, 140k, 577,6), выделенные из морских сред, отличающихся по степени антропогенной нагрузки – бухта Киевка, б. Круглая и б. Золотой Рог.

Для проведения микробиологических иcследований были выбраны прибрежные акватории Японского моря, отличающиеся природными особенностями, характером и степенью антропогенный нагрузки. Район работ включал акватории бухты Золотой Рог, испытывающие значительное влияние промышленных, бытовых и речных стоков, бухты Круглая, а также бухты Киевка, не обремененные значительными нагрузками антропогенного характера (рис. 1).

Рис. 1. Карта-схема районов работ: бухта Золотой Рог(1), бухта Круглая (3), бухта Киевка (2)

Бухта Золотой Рог впадает в северный берег пролива Босфор Восточный, между мысом Тигровым и мысом Голдобина, с северо-запада бухта ограничена полуостровом Шкота, вследствие чего для нее характерен низкий водообмен. Бухта используется для судоходства круглый год. Объем годового стока в бухту от разнообразных источников в 4,6 раза превышает объем воды ее акватории. Основными источниками загрязнения являются сточные системы городской канализации, судоремонтные предприятия, крупные городские порты. Часть акватории практически постоянно покрыта нефтяной пленкой, толщина которой у берегов может достигать 100 мкм, в донных осадках толщина отложений нефтесодержащих отходов составляет от 1 до 3 метров. В воде и грунтах высоко содержание техногенных металлов, фенолов, хлоорганических и поверхностно-активных соединений [3].

Бухта Киевка вдается в берег между мысом Суткового и мысом Островной. Северозападный и восточный берега бухты высокие, а берег вершины отмел и окаймлен песчаным пляжем. К берегу вершины бухты выходит низменная долина, по которой протекает река Киевка. На побережье отсутствуют жилые постройки, в летний период времени бухта испытывает незначительную рекреационную нагрузку. Бухта более открыта имеет место активный водообмен, по сравнению с другими выбранными, мониторинговые исследования позволяют отнести ее воды к категории «чистые» [4].

Бухта Круглая защищенная от юго-восточных ветров, незначительно вдается в северо-западный берег полуострова Брюса в 1,4 мили к WSW от мыса Брюса. Входные мысы бухты скалистые и обрывистые, к вершине бухты берег понижается и переходит в широкий галечный пляж. На берегу располагается санаторно-оздоровительный комплекс. Несмотря на то что техногенного загрязнения здесь не наблюдается, но в летний период времени имеет место рекреационная нагрузка [8].

Для выделения в чистую культуру морских бактерий использовали известные микробиологические методы [12] и среду для морских гетеротрофных микроорганизмов – СММ [14]. Определение видов исследуемых изолятов проводили на основании таксономических признаков по схеме Берджи [7].

Определение липолитической, протеолитической, амилолитической, гемолитической и лецитиназной активности проводили в соответствии с известными методами, описанными в литературе [12], высевая суточную культуру на соответствующие среды: с агаровой средой, содержащей 3 % липидного гомогенизата; 25%. снятого молока; 0,2% крахмала; 5% стерильной дефибринированной крови; 20% стерильной желточной взвеси [5; 12] Активность ферментов определяли по проявлению реакции на этих средах (рис. 2).

Рис. 2. Пример учета липазной активности штаммов на среде ГРМ

Для определения чувствительности микроорганизмов к антибиотикам использовали метод диффузии антибиотика в ГРМ агар с применением бумажных дисков. При определении чувствительности методом диффузии в агар чистую культуру бактерий засевали «газоном» на питательный агар в чашке тампоном, смоченным в стандартизованной (108 КОЕ/мл) суспензии микроорганизма. Затем на поверхность агара укладывали стандартные бумажные диски, пропитанные антибиотиками (карбеницилин, тетрациклин, ампицилин, цефотаксим, ципрофлоксацин, цефтозидим, цефоперазон), которые диффундируют в агар, создавая градиент концентрации. На чашку диаметром 90 мм равномерно укладывали 6-7 дисков. После инкубирования при комнатной температуре измеряли диаметры зон задержки роста вокруг дисков и по специальным таблицам определяли степень чувствительности к тому или иному [6]. Диаметр зон задержки роста микроорганизмов выражали в мм. Учитывали все случаи встречаемости чувствительности (слабо и высокочувствительный) и трактовали как чувствительный штамм, и отдельно учитывали нечувствительные к тому или иному антибиотику штаммы.

К факторам патогенности относят проявление у микроорганизмов гемолитической, цитопатической активности и адгезивных свойств. Для исследования гемолитической активности использовали 5% кровяной агар [12].

Для постановки опыта с целью изучения адгезивных свойств исследуемых штаммов была использована методика В. И. Бриллис (1986). В качестве экспериментальной модели были взяты эритроциты человека О (I) группы Rh (+) крови. Взвесь бактерий готовили в концентрации 109 клеток/мл, бактерии инкубировали при 370С. Адгезию изучали под световым микроскопом на микроскопе Micros mc 20. При оценке адгезивных свойств микроба использовали показатели: средний показатель адгезии (СПА), коэффициент участия клеток в адгезивном процессе (К) и индекс адгезивности микроорганизма (ИАМ). Подсчет вели на 100 клетках, просматривая все предметное стекло. Микроорганизмы считали неадгезивными при ИАМ меньше 1,75, низкоадгезивными – от 1,76 до 2,5, среднеадгезивными – от 2,51 до 4,0 и высокоадгезивными при ИАМ выше 4,0. Для исследования цитопатических свойств микроорганизмов использовали культуру клеток Vero E6. Монослой клеток выращивали в течение 3 суток на культуральных 96-луночных планшетах с использованием среды Игла МЕМ (minimal essential medium) с двойным набором аминокислот и витаминов, дополненной L-глютамином (1 мг/мл) и 7% сыворотки эмбрионов коров. Для инокуляции клеточных культур готовили суспензию клеток псевдомонад, выращенных на питательной среде для морских гетеротрофных организмов [14]. В эксперимент были взяты разведения культуры по стандарту мутности от 10-9 до 10-1 клеток/мл. Инокуляцию проводили суспензией 22-часовой культуры. Через определенные интервалы времени (24, 48 часов) оценивали цитотоксические и инвазионные свойства по инфицированию культуры клеток бактериями, по изменению морфологии отдельных клеток и деструкции монослоя при микроскопическом исследовании (рис. 3). Цитопатические свойства псевдомонад считали выраженными при наблюдении в поле зрения микроскопа дегенеративных изменений монослоя Vero E6 (гибель более 50 % клеток).

Читайте также:  Радость моя продолжай меня любить

Рис. 3. Визуальная оценка цитопатогенного действия морских микроорганизмов на монослой клеток Vero E6., выращенного в течение 3 суток на среде Игла МЕМ

Результаты и обсуждения

На первом этапе исследования были выделены из морской воды 32 морфотипа псевдомонад, из них 14 изолятов из б. Золотой Рог, 9 – из б. Круглая, 9 – из б. Киевка.

По результатам проведенных работ установлено, что свойства у штаммов бактерий, выделенных из акваторий с разной степенью антропогенной нагрузки, проявляются по-разному.

Данные, полученные при исследовании ферментативных свойств штаммов, выделенных из б. Киевка, оказались малорезультативными. Протеолитической активностью обладали 33% штаммов, а штаммов, разлагающих углеводы и липиды не было выявлено вовсе. Исследование штаммов б. Круглая показало, что 67% из них проявляют различные ферментативные свойства, наиболее часто встречаемой являлись липолитическая и лецитиназная активность. В б. Золотой Рог 64% штаммов обладали ферментативной активностью, причем большинство из этих штаммов (67%) обладали практически всем спектром исследуемых свойств, 22% обладали также гемолитической активностью.

При исследовании антибиотикочувствительности бактерий оказалось, что наиболее устойчивыми были штаммы, выделенные из б. Золотой Рог. 65% штаммов показали устойчивость ко всем антибиотикам, используемым в эксперименте. У 35% штаммов наиболее активное подавление роста вызвали ципрофлоксацин и цефоперазон, наименее активным оказался ампициллин (у 7% штаммов). Штаммы б. Круглая были устойчивы к 6-ти антибиотикам из 7-ми используемых в опыте. Наибольшее подавление роста наблюдали при воздействии ципрофлоксацина (100% подавление роста), наименьшее – ампициллин (22%). Среди штаммов, выделенных из б. Киевка 22% оказались устойчивыми ко всем антибиотикам. Наименьшее подавление роста клеток отмечено при воздействии ампициллина (44% штаммов) и цефтозидима (56%). Таким образом, сравнительное исследование показало, что в акваториях, страдающих от мощного антропогенного загрязнения, в микробных сообществах преобладают микроорганизмы устойчивые к лекарственным веществам. (рис. 4 а). Были исследованы свойства морских бактерий, которые характеризовали бы их потенциал с точки зрения патогенности, адгезивные свойства. Исследования показали, что наиболее выраженными адгезивными свойствами обладают штаммы, выделенные из поверхностных вод б. Золотой Рог.

В 43% случаев у штаммов, выделенных из б. Золотой Рог, проявлялись сильноадгезивные свойства, когда как у штаммов б. Круглая только в 9% случаев, а у штаммов из б. Киевка – в 2%.

Более слабые адгезивные свойства проявили 50% штаммов из бухты Золотой Рог, из бухты Круглая – 78% и 24% из бухты Киевка.

Наименьшие адгезивные свойства показали штаммы, выделенные из бухты Киевка (53% случаев), а также вовсе неадгезивные свойства показали штаммы в 21% случаев (рис. 4 б).

При изучении цитотоксических свойств исследуемых штаммов при исходной концентрации клеток — 109 клеток/мл не было получено четких результатов. Практически все культуры при исходной концентрации клеток (109 клеток/мл) в 50% случаев разрушали клетки монослоя.

Разведение культур штаммов дало более четкие результаты в отношении их токсичности к чувствительным тест-клеткам. Так 79% штаммов, выделенных из б. Золотой Рог были патогенными даже при разведении культуры бактерий до 105 кл/мл. У коллекции штаммов, выделенных из б. Круглая такими цитопатическими свойствами обладали 22 % из всех изолятов, а из б. Киевка – 11 % (рис.4 в).

А)

Б)

В)

Рис. 4.Сравнительная характеристика антибиотикочувствительности (А), адгезивных свойств (при ИАМ от 2,51 до 4,0 и выше ) (Б) и ЦПД (гибель клеток составила 50% и выше при разведении культуры до 105 кл/мл ) (В) морских бактерий из районов с разной степенью антропогенной нагрузки

Выводы

Доминирующими видами, выделенными из различных районов были, были Ps. рutida и Ps. cepacia, которые были обнаружены во всех исследуемых районах. Б. Золотой Рог характеризовалась большим процентом пигментирующих бактерий – 79%, так как пигментация является средством защиты бактериальных клеток в грязной среде.

Факторы патогенности более выражены у микроорганизмов из загрязненной акватории. Штаммы, выделенные из б. золотой Рог по всем показателям патогенности преобладают над штаммами, выделенными из бухт Киевка и Круглая.

В сравнении антибиотикочувствительности штаммов наиболее устойчивыми оказались штаммы, выделенные из б. Золотой Рог, что обуславливается высокой устойчивостью штаммов к тяжелым металлам.

В значительных концентрациях штаммы, выделенные из всех районов, оказывают разрушающее действие на живые клетки. Однако, при дальнейшем разведении культур бактерий наибольший цитопатический эффект показали штаммы из б. Золотой Рог. Следовательно, даже при малых количествах эти штаммы оказываются опасными для клеток живых организмов. В исследовании адгезивных свойств штаммы псевдомонад, выделенные из б. Золотой Рог, более агрессивны. Это связанно с тем, что среда влияет на поверхностные структуры бактериальных клеток, что в свою очередь влияет на адгезивность клеток.

На примере б. Золотой Рог, где имеется смешанное загрязнение вод, было показано, что загрязнение среды порождает более агрессивные штаммы, которые обладают выраженной фактической патогенностью и высокой вирулентностью. Работа сделана на стыке общей и медицинской микробиологии, поэтому такие исследования проводятся впервые и полученные материалы свидетельствуют о том, что необходимо продолжить изучение свойств морских сапрофитных бактерий, обитающих в условиях хронического антропогенного загрязнения.

Работа выполнена при финансовой поддержке Российского научного фонда (соглашение № 14-50-00034).

Рецензенты:

Кузнецова Т.А., д.м.н., заведующая лабораторией иммунологии ФГБУ НИИ эпидемиологии и микробиологии имени Г.П. Сомова, г. Владивосток;

Мартынова А.В., д.м.н., профессор кафедры биохимии, микробиологии и биотехнологии Школы естественных наук Дальневосточного Федерального университета, г. Владивосток.

Источник

Оцените статью