Стресс теста процессора linux

Стресс-тестирование систем в Linux – утилита stress-ng

Для организации и проведения нагрузочного стресс-тестирования в Linux-системах существует утилита stress-ng. С помощью неё несложно сгенерировать реальную рабочую нагрузку на тестируемые подсистемы и, соответственно, оценить её возможности. Утилита, традиционно для Linux, предоставляет для работы интерфейс командной строки. Однако, это ни в коей мере не делает её неудобной. Со своими задачами она справляется на «отлично». В данной статье приведены инструкции, отражающие основы работы с утилитой stress-ng для некоторых самых распространённых ситуаций в стресс-тестировании систем на основе Linux.

Основные особенности и возможности stress-ng

Возможности, которыми обладает утилита stress-ng, довольно широки. Об этом свидетельствует огромное количество всевозможных опций, которыми её наделили разработчики.
Но ключевой особенностью stress-ng является то, что это полноценный инструмент со встроенными тестами. В отличие от многих других аналогов, при выполнении теста не производится обращений к сторонним и/или внешним ресурсам. Таким образом, stress-ng абсолютно самодостаточна. Практически в любом дистрибутиве Linux она доступна в стандартном репозитории и устанавливается с помощью системы управления пакетами (СУП) дистрибутива. Например, в Ubuntu:

Кроме всего прочего, stress-ng в своём составе очень качественные тесты для тестирования процессоров, в совокупности позволяющие наиболее полно сгенерировать нагрузку на CPU, используя такие методы как целочисленные и с плавающей запятой, битовые операции, комплексные вычисления и т. д.

Синтаксис stress-ng

Как уже было отмечено, stress-ng имеет настолько огромный набор опций, что в рамках данной статьи целесообразнее остановиться лишь на основных, позволяющих протестировать все основные подсистемы: CPU, виртуальную память, а также дисковую подсистему.
Синтаксис stress-ng довольно прост:

Задаёт конкретный метод тестирования виртуальной памяти. По-умолчанию выполняются все доступные для данной категории тесты, последовательно друг за другом. Подробнее в официальном руководстве по команде man stress-ng.

—vm-method mЗадаёт конкретный метод тестирования виртуальной памяти. По-умолчанию выполняются все доступные для данной категории тесты, последовательно друг за другом. Подробнее в официальном руководстве по команде man stress-ng.

Основные опции stress-ng

В таблице ниже указаны основные опции утилиты

Опция Значение
—class name Задаёт тип теста. В качестве name указывается например cpu, memory, vm, io и другие.
—metrics Указывает, что по завершению теста должна быть выведена статистика основных метрик, отражающих поведение системы во время теста.
—metrics-brief То же, что и —metrics, но выводит ненулевые метрики.
—cpu-method method Задаёт метод генерации нагрузки для процессора. По-умолчанию выполняются все доступные для данной категории тесты, последовательно друг за другом. Более подробно об этой опции можно узнать, выполнив команду man stress-ng.
—cpu N Запускает для стресс-теста процессора N стрессоров для каждого его потока.
—cpu-ops N Указывает, через какое количество bogo-операций необходимо остановить тест CPU.
—hdd-ops N Указывает, через какое количество bogo-операций необходимо остановить тест жёстких дисков.
—hdd-bytes N Записывает N байт для каждого процесса работы с жёстким диском. По-умолчанию равно 1 Гб.
—vm N Запускает для стресс-теста виртуальной памяти N стрессоров.
—vm-bytes N Размещает N байт для каждого процесса работы с памятью. По-умолчанию равно 256 Мб. Объём также может быть указан в процентах от общего объёма виртуальной памяти в системе. Значения можно задавать в бфйтах, килобайтах, мегабайтах и гигабайтах, используя суффиксы b, k, m и g соответственно.
—sequential N Задает N количество потоков для выполнения тестов, если N не указано или равно 0, то количество потоков равно числу процессоров.

Для удобства и быстрого составления необходимых тестов рекомендуется пользоваться также некоторыми вспомогательными опциями, например:

  • что бы запустить несколько экземпляров каждого стресс-теста используется опция —all N, где N – необходимое количество экземпляров;
  • для установки таймаута, т. е. времени продолжительности стресс-теста используется опция —timeout.

Тестирование процессора

Для подавляющего большинства ситуаций классическим примером стресс-теста можно использовать тест, выполняемый следующей командой:

В данном тесте задействованы 16 потоков для тестирования 16-поточного процессора. Вывод результатов может быть следующим:

Естественно количество потоков следует задавать в соответствии со спецификацией используемого процессора.

Тестирование дисковой подсистемы

Для проведения стресс-тестирования накопителей, таких как жёсткие диски можно для начала провести низкоуровневый тест ввода вывода

Вывод команды будет следующим

Еще один стресс-тест дисков можно выполнить командой

В данном случае будет запущено 5 стрессоров для жёстких дисков, которые будут остановлены по завершении 100 тыс. bogo-операций.

Во время тестирования можно смотреть загрузку командой iostat

Тестирование памяти

Что бы провести стресс-тест памяти используйте команду

После окончания мы получим результат проверки приблизительно следующего вида

Комплексное тестирование

Если необходимо провести комплексное стресс-тестирование, можно задействовать работу нескольких основных подсистем вместе одной командой:

Эта команда запустит тест для CPU в 8 потоков, тест виртуальной памяти с размещением в ней одного гигабайта данных, а также 4 стрессора для тестирования операций ввода/вывода.

Что бы запустить тестирование всего «железа», используется команда

Эта команда запустит все тесты. После выполнения результат будет выведен в консоль. Во время выполнения команды лучше компьютер не трогать

Заключение

В заключение стоит ещё раз отметить, что утилита stress-ng по своим возможностям очень универсальна и позволяет качественно протестировать любую систему. Приведенные выше примеры охватывают наиболее распространённые ситуации по нагрузочному тестированию Linux-систем. Для проведения специфичных или более сложных тестов рекомендуется обращаться к официальному руководству по использованию утилиты, доступному по команде man stress-ng.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

⚒️ 8 полезных инструментов для стресс-тестирования вашего процессора Windows / Linux / MacOS

Когда вы проводите стресс-тестирование вашего процессора, вы можете оценить интеллектуальность и надежность вашего оборудования.

Может быть, вам нужно разогнать процессор для небольшого дополнительного ускорения?

В конечном счете, производительность вашего ПК зависит от того, насколько быстрым является процессор, чтобы он мог легко выполнять самые сложные задачи.

Следующие инструменты полезны при стресс-тестировании вашего процессора.

Прежде чем начать, вы должны знать, что эти тесты при пиковой нагрузке могут вызвать перегрев вашего компьютера.

1. HeavyLoad

Как и следует из названия, HeavyLoad от Jam Software может подвергнуть ваш компьютер чрезвычайно высокой нагрузке.

Когда он будет работать на полную мощность, вы будете лучше контролировать другие ресурсы вашего компьютера, такие как ОЗУ.

Попробуйте работать с разными приложениями, программами и браузерами одновременно.

Вы быстро узнаете, какие из них не следует использовать, если открыто слишком много окон.

2. AIDA64 Extreme

AIDA64 – это очень мощный инструмент, который совместим со всеми системами Microsoft в диапазоне от 95/98 до Windows Server 2016.

Он может выполнять детальный анализ с учетом многопоточных тестов памяти и кэша.

Программное обеспечение имеет дополнительные тесты на напряжение, скорость вращения вентилятора, температуру и многое другое.

Это полноценный диагностический инструмент.

3. Stress-Ng

Пользователи Linux могут полагаться на этот надежный инструмент для выполнения тех же нагрузочных тестов в своем любимом дистрибутиве.

Стресс-тесты, специфичные для процессора, включают в себя число с плавающей запятой, целое число, битовые манипуляции и поток управления.

Для Debian команда установки Stress-ng выглядит так:

С помощью Stress-ng вы можете указать метод процессора, время ожидания и количество поддерживаемых операций.

4. Geekbench 4 (Mac)

Как и панель задач Windows, Mac предлагает монитор активности, который предоставляет полную таблицу всех существующих процессов ЦП.

Но для стресс-теста вы должны загрузить внешнее приложение под названием Geekbench 4.

Оно выполняет различные нагрузочные тесты.

5. CPUX

Не хотите качать программное обеспечение?

CPUX даст вам мощный стресс-тест, а также покажет, какое место ваша система занимает среди других.

Если вы введете максимальное количество потоков («64») и запустите этот тест с максимальной мощностью («100%»), ваш компьютер может столкнуться с несколькими «проблемами», для устранения которых потребуется более пары перезагрузок.

Не говори потом, что мы тебя не предупреждали!

Источник

linux-notes.org

Стресс тест cpu на Linux (Debian/Ubuntu/Mint или RedHat/CentOS/Fedora)

Почему стоит выполнять стресс тест на процессор? Для проверки надежности и стабильности вашей машины/системы. Запуск стресс-теста помогут также помочь узнать, нужно ли обновить или добавить новое охлаждение для вашей машины. В своей теме «Стресс тест cpu на Linux (Debian/Ubuntu/Mint или RedHat/CentOS/Fedora)» я расскажу как пользоваться утилитой cpuburn для тестирования нагрузки на процессор(ы).

Установка CPUburn.

Устнановка cpuburn на /Debian/Ubuntu/Mint:

Устнановка cpuburn на RedHat/CentOS/Fedora:

Вы можете посмтреть руководство по использованию для утилиты cpubun, выполнив:

cpuburn, burnBX, burnK6, burnK7, burnMMX, burnP5, burnP6 — коллекция программ для тестирования большой нагрузки на CPU.

burnP5 оптимизирован для процессоров Intel Pentium с/без MMX.
burnP6 оптимизирован для процессоров Intel PentiumPro, Pentium II & III.
burnK6 оптимизирован для процессоров AMD K6.
burnK7 оптимизирован для процессоров AMD Athlon/Duron.
burnMMX тестыальтернативный кэш/тест памяти на всех процессарах с MMX.
burnBX альтернативный кэш/тест памяти оптимизирован для процессоров Intel.

Эти программы предназначены для загрузки процессоров для x86 насколько это возможно для целей тестирования системы. Они были оптимизированы для различных процессоров. FPU и ALU инструкции кодируются на ассемблере в бесконечном цикле. Они не испытывают все инструкции. Цель в том, чтобы создать нагрузку и посмотреть какая температура при этом создается, положив нагрузку на сам процессор, систему, материнскую плату и блок питания.

Утилита для тестирование разработана, чтобы создать на вашем компьютере сбой, поэтому убедитесь, что ничего критического не запущено на нем и все важные данные сохранены на жестких-дисках. Лучше всего, запустить программу на файловых системах и смотнируйте только для чтения. Обратите внимание, что root привилегии не требуется.

Запустите нужную программу в фоновом режиме, проверяя результат ошибки. Вы можете повторить эту команду для каждого процессора. Например,

Для мониторинга хода работы CPUBurn используйте ps. Вы можете следить за температурой процессора и/или напряжения в системе через ACPI или с помощью LM-датчиков, но если ваша система поддерживает это. После завершения стоит завершить данный (е) процессы, для примера:

Установите htop для мониторинга нагрузок на ваш сервер.

Запустим htop, для проверки нагрузки:

Стресс тест cpu на Linux (Debian/Ubuntu/Mint или RedHat/CentOS/Fedora) завершен.

Источник

Стресс тест процессора в Linux

Прогнал я тест Linpack и задумался: а не пора ли мне поменять термопасту на своём ноутбуке?

Да, по результатам нескольких тестов подряд (не буду захломлять статью картинками) видно, что процессор уходит в троттлинг (пропуск тактов и сброс частоты при нагреве), но вот, как быстро он начинает это делать?

Стресстест процессора в терминале Linux

Задавшись этим вопросом и поискав в интернете утилиты, я понял, что основная проблема в решении поставленной мной задачи — одновременный запуск, как минимум пары утилит и разбегающиеся глаза в двух окнах. И я пришёл к выводу, что мне больше подходит консольный вариант, нежели разноцветные окна открытых программ.

Начал я с sysbench:

sudo apt install sysbench

sysbench —num-threads=4 —test=cpu —cpu-max-prime=100000 run

  • —num-threads=4 — это количество потоков, у меня двухъядерный четырёхпотоковый Intel® Core™ i7-640M, поэтому 4;
  • —cpu-max-prime=100000 — это максимальное количество выполненных операций, я выставил в 100000, т.к. по умолчанию — 10000, слишком быстро завершают тест.

Потом я перешёл на Linpack. Так как процессор у меня от Intel и я имею некоторую долю лени (лень — двигатель прогресса), то я взял, скачал и распаковал готовый Intel-овский Linpack, предварительно создав в домашнем каталоге директорию linpack:

mkdir ./linpack
cd ./linpack
wget http://registrationcenter-download.intel.com/akdlm/irc_nas/9752/l_mklb_p_2018.3.011.tgz
tar -xvzf ./l_mklb_p_2018.3.011.tgz

Для AMD процессоров такой вариант я бы не стал пробовать, так как компилятор от Intel вставляет закладки, проверяющие процессор и если он не Intel. ну, подумаешь сотню-другую лишних инструкций процессор выполнит и заведомо проиграет в производительности. Для AMD лучше собрать Linpack из исходников, например, из этих. В данной статье сборку из исходников рассматривать не буду — читайте README в source code.

Вернёмся к Intel-овскому Linpack-у. Там много чего лишнего и мне не нужного, а то, что нужно рассмотрю относительно версии 2018.3.011. Сразу же перейду в нужную директорию, чтоб потом не набирать длинные команды:

Так как по умолчанию Intel-овский Linpack заточен под тестирование серверных Xeon-ов, создадим свой файл, который будет использоваться в качестве входных опций — просто уменьшим количество тестов, иначе устанем «пару-тройку дней» ждать завершения теста. У меня Linux Mint LMDE 3, поэтому я использую текстовый редактор xed, да и нравится он мне бОльшим функционалом, особенно, когда из-под root-а его запускать — он цвет на красный меняет. И так, создаём в этой же директории, в которую перешли, файл, например, my_test:

И в созданный файл копируем следующее содержимое:

Shared-memory version of Intel(R) Distribution for LINPACK* Benchmark. *Other names and brands may be claimed as the property of others.
Sample data file lininput_xeon64.
5 # number of tests
1000 2000 5000 10000 20000 # problem sizes
1000 2000 5008 10000 20000 # leading dimensions
4 2 2 2 1 # times to run a test
4 4 4 4 4 # alignment values (in KBytes)

Ну, и собственно запуск Linpack с созданным файлом:

./xlinpack_xeon64 -i ./my_test

Можно ещё заюзать stress-ng или stress, но поставленной мной задачи это всё-равно не решает. Вывода температуры, частот и времени от начала старта эти утилиты мне не показывают.

Температуру может показать sensors — подробнее про установку этой утилиты здесь. И эта утилита понадобится в дальнейшем рассмотрении моего вопроса. Линукс — велик и могуч: одна и та же задача может решаться по-разному. За Си мне лень было браться и я написал недостающую мне часть на BASH, ибо строк получилось не так уж и много. Без установленной sensors мой скрипт работать не будет. Фиксацию троттлинга естесственно не стал писать — его и так будет видно по сбросу частоты и температуре. Вот сам скрипт:

Сильно не ругайте за скидывание управляющих символов в stderr (1>&2), но это дело привычки, если вдруг потом вывод скрипта в файл отправлять, а там все эти ESC-апе последовательности точно не нужны, вот так и будет терминал цветным, а файл чистым. Что-то я отвлёкся.

Я создал файл chk в директории с linpack-ом и записал скрипт в него, Вы можете сделать тоже самое, за исключением xed, если у Вас его нет:

И собственно то, ради чего всё затевалось — тест Linpack cо скриптом:

./chk ./xlinpack_xeon64 -i ./my_test

Да, я вижу, одно ядро нагрелось до критического TDP в 105°C за 86 секунд, но это мне ни о чём не говорит, а вот то, что с 50°C до 80°C процессор нагревается за 2 секунды — это уже показатель: термопасту точно пора менять — два года не менял, а вот с системой охлаждения останется вопрос, который проявят тесты после замены термопасты и термопроводящих прокладок на моём ноутбуке.

Почему именно 80°C я взял за отправную точку? Да просто потому, что именно эта температура заложена в BIOS, как температуры начала скидывания частот, да ещё и начало включения кулера выставлена в 55°C в угоду энергосбережению, но BIOS — InsydeH20, да ещё и с проверкой своей хэш-суммы и белым списком девайсов — та ещё головная боль. будет программатор — займусь им вплотную.

Скрипт писал на скорую руку и с ориентиром на Linpack, но он так же свободно работает и с другими консольными утилитами. Вот запуск с вышеизложенным sysbench:

./chk sysbench —num-threads=4 —test=cpu —cpu-max-prime=100000 run

Как видно из скриншота sysbench не даёт полную нагрузку на процессор, в отличии от Linpack-а.

Вот запуск с утилитой stress (подробнее про stress — здесь):

./chk stress —cpu 16

Естественно выход/окончание теста с утилитой stress осуществляется вручную по CTRL+C, отсюда и Error: 1 выведенная моей переменной PS1 из-за подобной реализации выхода из скрипта через exit 1.

Скрипт можно запустить и без опций, но тогда он только температуру и частоты в почти реальном времени показывает:

В любом случае выход из скрипта осуществляется автоматически, по окончании теста или можно выйти, нажав CTRL + C:

В общем: поставленную для себя задачу я решил и даже лучше — появилась целая надстройка над тестовыми утилитами. Осталось ноутбук разобрать и поменять таки термопасту с прокладками: как вспомню — аж страшно становится.

Источник

Читайте также:  Чувствую себя очень уверенно
Оцените статью