- Оксидативный стресс: что это, причины, признаки, лечение
- Оксидативный стресс: что это такое простыми словами?
- Причины окислительного стресса
- Симптомы окислительного стресса
- Возможно ли лечение окислительного стресса?
- Что такое свободные радикалы?
- Как связаны свободные радикалы и антиоксиданты?
- Опасность! Избыток свободных радикалов!
- Почему оксидативный стресс влияет на зачатие?
- Как справиться с оксидативным стрессом?
- Окислительный стресс – глобальная проблема медицины критических состояний. Часть 1
- Часть первая: Патофизиология окислительного стресса. Антиоксиданты-антигипоксаты
- Фотоизображение клеток при помощи конфокального микроскопа
- Универсальные патогенетические механизмы патологических состояний:
- Основные патологические процессы, инициируемые чрезмерной активацией ПОЛ:
Оксидативный стресс: что это, причины, признаки, лечение
Первопричиной ряда заболеваний, в том числе и репродуктивной системы нередко называют окислительный, или оксидативный, стресс.
Оксидативный стресс: что это такое простыми словами?
Окислительный стресс организма – неконтролируемый процесс разрушения органических соединений (белков, фосфолипидов и т. д.), ведущий к нарушению нормальной работы клеток, тканей и органов в результате воздействия свободных радикалов. Это частицы, которые получаются вследствие некоторых биохимических реакций. Свободные радикалы есть в организме каждого человека, их содержание менее 5% считается нормой.
Свободные радикалы обладают особенным строением – у них есть неспаренный электрон. При встрече с «обычной» молекулой свободный радикал «отбирает» у нее один электрон, тем самым превращая уже ее в активный свободный радикал. Он, в свою очередь, тоже отправляется на поиски полной молекулы, а не выполняет свою роль в организме. Так происходит цепная окислительная реакция. Окислительный стресс «бьет» по всем системам организма, в том числе и репродуктивной: повреждаются яйцеклетки и сперматозоиды, разрушается заложенный в них генетический материал, изменяется строение.
Причины окислительного стресса
Рост числа свободных радикалов могут спровоцировать следующие факторы:
- Курение.
- Злоупотребление алкоголем.
- Употребление продуктов с большим количеством консервантов, некачественного масла, овощей, обработанных пестицидами.
- Неблагоприятная экологическая обстановка. Вредные вещества попадают в организм с выхлопными газами, пылью с частицами асбеста.
- Стрессовые состояния, чрезмерные физические нагрузки, переутомление.
- Прием большого количества лекарств.
- Длительное нахождение в непроветренном помещении.
Симптомы окислительного стресса
У окислительного стресса нет четких симптомов. К тому же он может развиваться в разных органах и иметь разные проявления. Чаще всего об этом состоянии говорят следующие признаки:
- Вы постоянно чувствуете усталость.
- Снизился иммунитет – вы часто болеете.
- Концентрация внимания заметно снизилась.
- Состояние кожи ухудшилось. Она стала вялой, дряблой, потеряла здоровый цвет, появились морщины.
- Зрение стало хуже.
- Вы чутко реагируете на сильный шум, часто испытываете головную боль.
Возможно ли лечение окислительного стресса?
Лечение оксидативного стресса сводится к сокращению вредных воздействий на человека и приему антиоксидантных комплексов. К сожалению, человек не всегда может кардинально изменить свой образ жизни (например, переехать в место с более благоприятной экологической обстановкой, питаться фермерскими продуктами, отказаться от автомобиля). Однако прием комплексов антиоксидантов доступен каждому.
Антиоксиданты – это вещества, которые «связывают», нейтрализуют свободные радикалы. Многие антиоксиданты имеют природное происхождение. Разные антиоксиданты «работают» в разных органах и тканях, поэтому желательно принимать именно комплекс, а не какой-то один из них.
Список самых мощных природных антиоксидантов для борьбы с окислительным стрессом:
- Рутин отвечает за здоровье капилляров и сосудов, поддерживает их эластичность.
- Коэнзим Q10 особенно активно работает в сердце, мышцах, коже, а также органах репродуктивной системы. Важно, что он восстанавливает активность других антиоксидантов.
- Ликопин особенно важен для мужской репродуктивной системы. Он также восстанавливает процессы выработки энергии, которые нарушаются при окислительном стрессе.
- Витамин C оберегает от свободных радикалов сосуды, клетки крови, иммунитета.
- Витамин E защищает от окислительного стресса сперматозоиды и яйцеклетки, мембраны клеток.
- Бета-каротин нужен для половых органов, сетчатки глаз, кожи.
Хорошо себя зарекомендовал комплекс антиоксидантов Синергин, в состав которого входят все перечисленные выше компоненты (подробнее о продукте можно узнать здесь).
НЕ ЯВЛЯЕТСЯ РЕКЛАМОЙ. МАТЕРИАЛ ПОДГОТОВЛЕН ПРИ УЧАСТИИ ЭКСПЕРТОВ.
Источник
Что такое свободные радикалы?
Мы устроены так, что внутри нашего организма постоянно протекает множество биохимических реакций. Побочными продуктами некоторых из них являются свободные радикалы – это агрессивные молекулы, которым не хватает одного электрона до стабильного состояния.
Как связаны свободные радикалы и антиоксиданты?
Свободные радикалы обладают высокой активностью и могут отбирать этот электрон у других молекул. Лишившись электрона, эти молекулы, в свою очередь, превращаются в свободные радикалы и больше непригодны для выполнения своих функций в организме.
В норме небольшое количество свободных радикалов всегда присутствует в организме, они даже используются для активации некоторых процессов. Количество свободных радикалов контролируют специальные вещества – антиоксиданты. Они вступают в реакцию со свободными радикалами и превращают их в безопасные для организма соединения, но при этом сами не становятся свободными радикалами. Такой процесс называется нейтрализацией свободных радикалов.
Опасность! Избыток свободных радикалов!
В некоторых ситуациях количество свободных радикалов может резко увеличиться. Это происходит, например, при курении, вдыхании выхлопных газов, пыльного воздуха и других промышленных загрязнений, а также при нахождении под ярким солнцем, употреблении еды с большим количеством консервантов, контакте с пестицидами. К росту числа свободных радикалов в организме приводят постоянный стресс и хроническая усталость, малоподвижный образ жизни, инфекционные заболевания.
Когда свободных радикалов становится слишком много, собственные антиоксиданты организма не справляются с их нейтрализацией. И свободные радикалы разрушают все, с чем сталкиваются: клетки, генетический материал, белки и углеводы, из которых состоят ткани, а также другие нужные молекулы, которые могут находиться как в клетке, так и в крови или межклеточном пространстве. От свободных радикалов в первую очередь страдают молекулы ДНК (генетический материал клеток) и липиды («кирпичики», из которых построены стенки клеток). Поэтому избыток свободных радикалов негативно сказывается на росте и созревании половых клеток (сперматозоидов и яйцеклеток). Кроме того, при повышенном количестве свободных радикалов истощаются энергетические запасы на клеточном уровне.
Избыток свободных радикалов вызывает лавинообразный рост новых свободных радикалов, которые, в свою очередь, продолжают разрушение организма на клеточном и молекулярном уровне. В организме возникает оксидативный стресс.
Почему оксидативный стресс влияет на зачатие?
Оксидативный стресс приводит к многим нежелательным изменениям в организме, поскольку «сбивает» работу практически всех систем на молекулярном и клеточном уровне.
Одно из самых необратимых проявлений оксидативного стресса – это старение. Оно выражается не только ухудшением внешнего вида, но и угасанием репродуктивной функции. В первую очередь при избытке свободных радикалов страдают наименее защищенные клетки – это сперматозоиды и яйцеклетки. Свободные радикалы повреждают как сами половые клетки, так и заложенные в них ДНК. В результате возрастает риск выкидыша или рождения ребенка с отклонениями в развитии, генными аномалиями. Также свободные радикалы могут нарушать процессы созревания сперматозоидов, поэтому при оксидативном стрессе в сперме мужчины меньше сперматозоидов правильного строения и подвижных, способных достичь яйцеклетки.
Другое проявление оксидативного стресса – различные метаболические нарушения, в том числе гиперплазия предстательной железы, эндометриоз, мастопатия, поликистоз. Эти состояния также ухудшают фертильность.
Еще одно проявление оксидативного стресса, опасное для будущих родителей, – это ухудшение состояния сосудов. При нарушении состояния сосудистой системы ухудшается снабжение кислородом и другими питательными веществами всех органов и систем, в том числе и репродуктивной. В результате ухудшения состояния сосудов нарушается сперматогенез, снижается женская репродуктивная функция, развиваются гипертония или атеросклероз.
Как справиться с оксидативным стрессом?
Но есть и хорошая новость! Предотвратить или уменьшить оксидативный стресс поможет прием дополнительных порций антиоксидантов. При курсовом приеме антиоксидантов излишек свободных радикалов постепенно устраняется. А это значит, что исчезает причина развития многих нежелательных состояний и изменений в организме, сохраняется репродуктивное здоровье и продлевается период активной жизни.
При этом важно помнить, что устранить избыток свободных радикалов за один день невозможно, поэтому принимать антиоксиданты следует в течение 1-3 месяцев.
Лучше выбирать не один антиоксидант, а комплексы, сочетающие вещества, которые проникают и работают в разных средах организма. Например, витамин Е будет защищать кожу и клетки стенок, а витамин С и рутин – сосуды и межклеточную жидкость. По такому принципу создан Синергин – комплекс шести мощных природных антиоксидантов, которые проникают во все среды и клетки организма.
Как показывают исследования, прием Синергина повышает антиоксидантную силу семенной жидкости, увеличивает количество сперматозоидов правильного строения и снижает долю сперматозоидов с поврежденной ДНК до нормальных значений. Иными словами, доказано, что Синергин эффективен для устранения оксидативного стресса в органах репродуктивной системы.
НЕ ЯВЛЯЕТСЯ РЕКЛАМОЙ. МАТЕРИАЛ ПОДГОТОВЛЕН ПРИ УЧАСТИИ ЭКСПЕРТОВ.
Источник
Окислительный стресс – глобальная проблема медицины критических состояний. Часть 1
Часть первая: Патофизиология окислительного стресса. Антиоксиданты-антигипоксаты
Профессор, академик РАЕН и МАНЭБ Назаров. И.П.
Окислительный стресс определяется как неустойчивое состояние в организме между прооксидантами и антиоксидантами. Прооксидантные факторы включают все элементы, которые играют активную роль в повышенном образовании свободных радикалов или других реактивных видов кислорода. В этих процессах участвуют как клеточные механизмы (специфические ферменты, дефекты в митохондриальном дыхании), так и экзогенные факторы (радиация, курение, загрязнение воздуха, заболевания, травмы, операции, лекарства и другое). Поскольку образование производных кислорода и уровень антиоксидантной защитной системы организма приблизительно сбалансированы, то легко сдвинуть баланс в пользу производных кислорода и нарушить биохимию клетки. Эта диспропорция называется окислительным стрессом.
Окислительный стресс является патогенетической основой критических состояний, изменения проницаемости клеточных мембран, функционирования мембраносвязанных ферментов и, в конечном итоге, приводит к тяжелым нарушениям клеточного метаболизма (С.С.Белоусов с соавт., 1998).
Фотоизображение клеток при помощи конфокального микроскопа
Здоровая клетка Белковые агрегаты, образующиеся в клетках
при окислительном процессе
Рис. 1. Патологическая роль окислительного стресса
Причиной развития окислительного стресса (ОС) является накопление в организме избытка свободных радикалов. Короткоживущие нестабильные радикалы это небольшие молекулы ОН гидроксил радикал 02– – и большие радикальные молекулы, несущие так называемый центрированный радикал, в котором неспаренный электрон локализован около какого-либо атома этой молекулы (углерод-центрированные радикалы R-CH2-СН -CН2. или углерод-кислород-центрированные радикалы R-00 ) кислорода. Долгоживущие стабильные радикалы, когда неспаренный электрон делокализован между многими атомами (аскорбат-радикал, радикалы коэнзима Q, токофероксил-радикал).
Стабильность центрированного радикала зависит от положения окружающих его химических групп в молекуле. Так, например, некоторые нитроксильные радикалы, хотя и имеют не делокализованный электрон у атома кислорода, но стабильны благодаря наличию СН3-групп, которые «экранируют» радикальный центр от контакта с другими молекулами.
Сталкиваясь с молекулой, свободный радикал отрывает от нее атом водорода (рис.2). Образуется валентно насыщенная молекула, которая превращается в свободный радикал. Он может оторвать атом водорода от другой молекулы или прореагировать с другим радикалом или молекулой кислорода. Пероксидный радикал ROO отрывает атом водорода от другой молекулы и образуется органический пероксид ROOH. Эта вырожденная цепная реакция называется ПРОЦЕССОМ АВТООКИСЛЕНИЯ УГЛЕВОДОРОДОВ ИЛИ СВОБОДНО-РАДИКАЛЬНЫМ ОКИСЛЕНИЕМ (СРО).
Рис. 2. Свободно-радикальное окисление
Базисными механизмами патологии при любых критических состояниях являются свободно-радикальные процессы и изменения свойств биомембран клеток. При ишемии тканей, особенно мозга и миокарда, главная патологическая роль свободных радикалов заключается в том, что они активно взаимодействуют с молекулами, формирующими нейрональные и внутриклеточные мембраны. Повышается вязкость мембран, утрачивается их пластичность и функциональное состояние.
Восстановление кровотока в ранее ишемизированных тканях также представляет определенную опасность. Реперфузия обуславливает многократное повышение парциального давления кислорода с дальнейшим повышением свободно-радикальных процессов. При этом повреждается эндотелий капилляров, антикоагулянтная активность которых трансформируется в прокоагулянтную.
Лейкоциты и тромбоциты вследствие увеличивающейся адгезии закупоривают церебральные капилляры. Усугубляется этот процесс и увеличением ригидности эритроцитов, что резко усиливает нарушение оксигенации тканей, особенно мозга. Угнетаются процессы фибринолиза крови, расширяется зона повреждения тканей, инфаркта мозга, усиливается отек мозга. Имеется прямая зависимость между накоплением продуктов ПОЛ и тяжестью поражения мозга и других тканей. Наряду с этим активируются гены, ответственные за программированную гибель клетки – апоптоз.
Универсальные патогенетические механизмы патологических состояний:
1. Чрезмерное, неконтролируемое эндогенной антиоксидантной системой (АОС) усиление процессов ПОЛ.
2. ГИПОКСИЯ – недостаточное снабжение или потребление кислорода клетками и тканями организма. При этом гипоксия и ПОЛ усиливают взаимно друг друга, что ведет к нарушениям энергетических и метаболических процессов в клетках и тканях (рис.3).
Причины инициации (усиления) ПОЛ:
- Стресс (любого происхождения);
- Ишемия;
- Гипоксия;
- Реперфузия тканей (реперфузионный синдром);
- Воспаление (асептическое или бактериальное);
- Недостаточная активность физиологической антиоксидантной системы (относительная или абсолютная).
Основные патологические процессы, инициируемые чрезмерной активацией ПОЛ:
I. КЛЕТОЧНО-ТКАНЕВОЙ УРОВЕНЬ:
- нарушение проницаемости клеточной мембраны и мембран клеточных органелл
- чрезмерное накопление свободных радикалов внутри клетки;
- выход лизосомальных ферментов внутрь клетки;
- накопление внутри клетки ионов Са++;
4. Апаптоз и некроз клеток;
5. Нарушение клеточной рецепции;
6. Энергетические и метаболические нарушения.
II. ОРГАНЫ И СИСТЕМЫ:
1. Функциональные нарушения;
2. Органическая патология.
Рис. 3. Окислительный стресс при гипоксии
Конечно, в организме существует эндогенная антиоксидантная система, но при критических уровнях гипоксии и ПОЛ она несостоятельна. Антиоксидантнаясистема (АОС) организма состоит из ферментов и водорастворимых, и жирорастворимых субстратов. Главным механизмом антиоксидантной защиты в естественных условиях является фермент супероксиддисмутаза (СОД), оксидность которой позволяет инактивировать свободные радикалы в месте образования, не допуская их диффузии.
Большинство клеток может переносить умеренную степень окислительного стресса благодаря тому, что они обладают репаративной системой, выявляющей и удаляющей поврежденные окислением молекулы, которые затем заменяются. Кроме того, клетки могут повысить свою антиоксидантную защиту в ответ наокислительный стресс. Однако при выраженном окислительном стрессе все молекулы живых организмов (липиды, белки, нуклеиновые кислоты и углеводы) могут быть потенциальными мишенями окислительного повреждения.
Поскольку формирование тканевой гипоксии, ПОЛ, митохондриальная дисфункция признаны пусковым звеном развития типового патологического процесса, использование антигипоксантов и антиоксидантов патогенетически обосновано при любой острой патологии.
Термин «антиоксиданты» появился ещё в 60-х годах XX века благодаря исследованиям Б. Н. Тарусова (1954), Н. М. Эмануэля (1963). Б. Н.Тарусов установил роль липидов, особенно ненасыщенных жирных кислот, как одного из основных субстратов биохимических процессов, провел скрининг радиозащитного влияния цистеина, глутатиона, тиомочевины. Н. М. Эмануэль и его ученики не только определили механизм действия антиоксидантов, но также дали определение антиоксидантов как соединений, угнетающих развитие свободнорадикального окисления.
Препараты антиоксиданты – это лекарственные средства различного химического строения, тормозящие или блокирующие процессы свободнорадикального окисления и/или способствующие увеличению в организме уровня веществ с антиокислительным действием (рис. 4).
По своим химическим свойствам антиоксиданты (АО) подразделяются на 2 группы: “ловушки радикалов”, непосредственно взаимодействующие сосвободными радикалами и “скавенжеры” (уборщики), разлагающие продуктысвободно – радикального окисления (СРО) с их последующей инактивацией и утилизацией.
Рис. 4. Механизм действия антиоксидантов
Разработано и изучается в настоящее время большое количество препаратов с антигипоксантными-антиоксидантными свойствами (мексидол, цитофлавин, танакан, актовегин, кортексин, цитофлавин, ПК-мерц, аминалон, цераксон, эспалипон, церебро и др.). Многие из них уже показали свою высокую эффективность у реанимационных больных, особенно в нейрореаниматологии (это отдельная тема). Однако в научном плане ОС, его значимость в критических состояниях и коррекция антиоксидантами (ОИМ, ЧМТ, кровопотеря, операции, анестезии и т.д.) изучены крайне, мало. А в практическом приложении мониторинг степени ОС и эффективность его коррекции антиоксидантами в больницах вообще не проводится.
Причинами такого положения, прежде всего, являются низкие знания врачей по ОС. Читая лекции на курсах повышения квалификации, мы убедились в том, что анестезиологи-реаниматологи слабо ориентируются в это проблеме. Уместно вспомнить слова В.И.Вернадского: «Нет неизлечимых заболеваний, есть недостаток знаний». Сдерживается применение антиоксидантов в практическом здравоохранении полным отсутствием в лабораториях и отделениях больниц аппаратуры, измеряющей и мониторирующей изменения АОС и ОС больных, не включение в «стандарты» лечения (за исключением терапии инсультов) данных препаратов. Между тем эмпирическая медицина уже опережает научные разработки и «стандарты» в лечении критических состояний. Так в Красноярской краевой больнице уже накоплен многолетний положительный опыт использования антиоксидантов-антигипоксантов в лечении тяжелой ожоговой и черепно-мозговой травмы, гнойно-септических состояний, операциях на головном мозге и сердце, комах различной этиологии.
На примере только одного препарата мексидола, из обширной группы антиоксидантов, можно понять насколько полезны и необходимы в интенсивной терапии критических состояний эти средства.
Мексидол – международное название оксиметилэтилперидина сукцинат. Обладает высокой биодоступностью и липофильностью. Быстро переходит из кровеносного русла в органы и ткани и быстро элиминируется из организма. Благодаря наличию в его составе производного 3-оксипиридина, являющегося активным носителем, проникает внутрь клетки и митохондрий (Дюмаев К.Н., 1995). Препарат практически не токсичен.
Рис. 5. Особенности реакции цикла Кребса, связанной с сукцинатом
1. Окисление сукцината – обязательное условие каталитического действия интермедиата на усвоение клеткой кислорода.
2. Для пополнения пула органических кислот достаточно введения одного сукцината.
3. Активность сукцинатдегидрогеназы не зависит от концентрации НАД и НАДхН.
4. Мощность системы энергопродукции, использующей ЯК, в сотни раз превосходит все другие системы.
5. Феномен быстрого окисления сукцината в цитоплазме клеток с восстановлением динуклеотидов.
Производные 3-оксипиридинов (как составная часть мексидола):
- Играют большую роль в обмене веществ.
- Необходимы для нормального функционирования ЦНС.
- Входят в состав ферментов, осуществляющих декарбоксилирование и периаминирование аминокислот.
- Участвуют в обмене триптофана, метионина, цистеина, гистамина, глутаминовой и других аминокислот.
- Участвуют в процессах липидного обмена.
Проведенные экспериментальные и клинические исследования показали эффективность применения антиоксидантов в лечении ОИМ И ОНМК. При ишемии миокарда возникает ограничение зоны некроза в миокарде (рис.6); усиление биоэлектрической активности сердца; улучшение гемодинамики и толерантности сердца к нагрузкам.
Рис. 6. Ограничение зоны некроза миокарда мексидолом
Рис. 7. Влияние антиоксидантов на продолжительность жизни
Источник