Тест по физике Дисперсия света 9 класс
Тест по физике Дисперсия света, Цвета тел, Типы оптических спектров для учащихся 9 класса с ответами. Тест включает в себя 10 заданий с выбором ответа.
1. Примером дисперсии света может служить образование
1) радужных пятен на поверхности лужи при попадании в нее бензина
2) темных пятен на Солнце, наблюдаемых в телескоп
3) разноцветной радуги в солнечный день при разбрызгивании воды на газонах
4) разноцветных пятен на белом белье при стирке его с цветным
2. Разложение пучка солнечного света в спектр при прохождении его через призму объясняется тем, что свет состоит из набора электромагнитных волн разной длины, которые, попадая в призму,
1) движутся с разной скоростью
2) имеют одинаковую частоту
3) поглощаются в разной степени
4) имеют одинаковую длину волны
3. В шкафу висят две куртки. Одна куртка синего цвета, другая -желтого. Разные цвета курток говорят о том, что
1) синяя куртка холоднее на ощупь, чем желтая
2) синяя куртка лучше греет
3) краски, которыми покрашены куртки, поглощают свет разных длин волн
4) желтая куртка прочнее
4. После прохождения белого света через красное стекло свет становится красным. Это происходит из-за того, что световые волны других цветов в основном
1) отражаются
2) поглощаются
3) рассеиваются
4) преломляются
5. Химики обнаружили, если в пламя газовой горелки (цвет пламени синий) бросить щепотку поваренной соли (NaCl), то цвет пламени на время приобретет яркую желтую окраску. Это послужило основой разработки метода
1) измерения температуры пламени
2) выделения натрия из поваренной соли
3) спектрального анализа химического состава вещества
4) нового горючего
6. Известно, что криптон имеет в видимой части спектра излучения линии, соответствующие длинам волн 557 нм и 587 нм. В спектре излучения неизвестного газа обнаружены две линии, соответствующие 557 нм и 587 нм. Отсюда следует, что в неизвестном газе
1) криптон отсутствует
2) присутствует только криптон
3) помимо криптона присутствует еще один элемент
4) помимо криптона присутствуют еще два или три элемента
7. Известно, что криптон имеет в видимой части спектра излучения линии, соответствующие длинам волн 557 нм и 587 нм. В спектре излучения неизвестного газа обнаружена только линия, соответствующая 557 нм. Отсюда следует, что в неизвестном газе
1) криптон отсутствует
2) присутствует только криптон
3) помимо криптона присутствует еще один элемент
4) помимо криптона присутствуют еще два или три элемента
8. На рисунках А, Б, В приведены спектры излучения газов А и В и газовой смеси Б. На основании анализа этих участков спектров можно сказать, что смесь газов содержит
1) только газы А и В
2) газы А, В и другие
3) газ А и другой неизвестный газ
4) газ В и другой неизвестный газ
9. На рисунке приведены спектр поглощения неизвестного газа (в середине), спектры поглощения атомов водорода (вверху) и гелия (внизу). Что можно сказать о химическом составе газа?
1) Газ содержит атомы водорода и гелия
2) Газ содержит атомы водорода, гелия и еще какого-то вещества
3) Газ содержит только атомы водорода
4) Газ содержит только атомы гелия
10. На рисунках А, Б, В приведены спектры излучения паров стронция, неизвестного образца и кальция. Можно утверждать, что в образце
1) не содержится ни стронция, ни кальция
2) содержится кальций, но нет стронция
3) содержатся и стронций, и кальций
4) содержится стронций, но нет кальция
Ответы на тест по физике Дисперсия света, Цвета тел, Типы оптических спектров
1-3
2-1
3-3
4-2
5-3
6-2
7-1
8-1
9-1
10-4
Источник
Пример депрессии света может быть
Одним из результатов взаимодействия света с веществом является его дисперсия.
Дисперсией света называется зависимость показателя преломления n вещества от частоты ν (длины волн λ) света или зависимость фазовой скорости световых волн от их частоты.
Дисперсия света представляется в виде зависимости:
или
.
Следствием дисперсии является разложение в спектр пучка белого света при прохождении его через призму (рис. 10.1). Первые экспериментальные наблюдения дисперсии света проводил в 1672 г. И. Ньютон. Он объяснил это явление различием масс корпускул.
Рассмотрим дисперсию света в призме. Пусть монохроматический пучок света падает на призму с преломляющим углом А и показателем преломления n (рис. 10.2) под углом .
| |
Рис. 10.1 | Рис. 10.2 |
После двукратного преломления (на левой и правой гранях призмы) луч оказывается преломлен от первоначального направления на угол φ. Из рис. следует, что
.
Предположим, что углы А и малы, тогда углы
,
,
будут также малы и вместо синусов этих углов можно воспользоваться их значениями. Поэтому
,
, а т.к.
, то
или
.
Отсюда следует, что
т.е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы.
Из выражения (10.1.1) вытекает, что угол отклонения лучей призмой зависит от показателя преломления n, а n – функция длины волны, поэтому лучи разных длин волн после прохождения призмы отклоняются на разные углы. Пучок белого света за призмой разлагается в спектр, который называется дисперсионным или призматическим, что и наблюдал Ньютон. Таким образом, с помощью призмы, так же как с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав.
Рассмотрим различия в дифракционном и призматическом спектрах.
· Дифракционная решетка разлагает свет непосредственно по длинам волн, поэтому по измеренным углам (по направлениям соответствующих максимумов) можно вычислить длину волны (частоты). Разложение света в спектр в призме происходит по значениям показателя преломления, поэтому для определения частоты или длины волны света надо знать зависимость или
.
· Составные цвета в дифракционном и призматическом спектрах располагаются различно. Мы знаем, что синус угла в дифракционной решетке пропорционален длине волны . Следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. Призма же разлагает лучи света в спектре по значениям показателя преломления, который для всех прозрачных веществ с увеличением длины волны (т.е. с уменьшением частоты) уменьшается (рис. 10.3).
Поэтому, красные лучи отклоняются призмой слабее, в отличие от дифракционной решетки.
Величина (или
), называемая дисперсией вещества, показывает, как быстро меняется показатель преломления с длиной волны.
Из рис. 10.3 следует, что показатель преломления для прозрачных веществ с увеличением длины волны увеличивается, следовательно величина по модулю также увеличивается с уменьшением λ.Такая дисперсия называется нормальной. Вблизи линий и полос поглощения, ход кривой дисперсии
будет иным, а именно n уменьшается с уменьшением λ. Такой ход зависимости n от λ называется аномальной дисперсией. Рассмотрим подробнее эти виды дисперсии.
Источник