Последствия окислительного стресса биохимия

Окислительный стресс

Опубликовано пн, 29/07/2019 — 16:04

Биохимическая целостность мозга жизненно важна для нормального функционирования центральной нервной системы (ЦНС). Одним из факторов, способствующих церебральной биохимической недостаточности, является химический процесс, называемый окислительным стрессом.

Окислительный стресс возникает при чрезмерной продукции свободных радикалов в результате недостаточности противодействующей системы антиоксидантного ответа. Мозг с его высоким потреблением кислорода и высоким содержанием липидов очень чувствителен к окислительному стрессу. Следовательно, вызванное окислительным стрессом повреждение головного мозга обладает выраженным потенциалом для негативного воздействия на нормальные функции ЦНС.

Этиологические факторы окислительного стресса

Возможно, психологический стресс нарушает окислительно-антиоксидантный баланс в мозге, вызывая нарушение функции антиоксидантных ферментов. Это приводит к истощению глутатиона и увеличивает окислительный стресс. Одновременно возникающая токсичность глутамата, дисбаланс кальция и митохондриальное нарушение совместно усиливают окислительный стресс, вызывая биохимические расстройства в мозге. Это нарушает нейроциркуляцию и ослабляет гиппокампальные, миндалевидные и корковые связи, в конечном итоге вызывая поведенческие и когнитивные нарушения

Патогенез окислительного стресса

Окислительное фосфорилирование, происходящее в митохондриях, является основным источником АТФ. В качестве побочного продукта этот процесс приводит к образованию свободных радикалов или активных форм кислорода (ROS), активных форм азота (RNS) и радикалов, содержащих углерод и серу. В умеренных или низких количествах ROS считаются необходимыми для развития и функционирования нейронов, тогда как слишком высокие уровни опасны. Генерируемая ROS закись азота и оксид углерода способствуют важным физиологическим функциям, таким как длительное потенцирование (LTP) посредством глутамат-зависимых механизмов. В нормальных условиях антиоксидантная система нейтрализует вредные эффекты продукции ROS во время аэробного метаболизма, и таким образом мозг эффективно регулирует потребление кислорода и способность к выработке окислительно-восстановительного потенциала. Когда продукция ROS превышает поглощающую способность системы антиоксидантного ответа, происходит интенсивное окисление белка и перекисное окисление липидов, вызывающее окислительное повреждение, клеточную дегенерацию и даже функциональное снижение активности мозга. Например, высокие концентрации ROS, как сообщается в литературе, уменьшают LTP и синаптическую передачу сигналов и механизмы пластичности мозга.

Окислительный стресс часто описывается как «саморазрушающий» феномен на основании наблюдений, поскольку чрезмерное высвобождение активных форм кислорода , вызванное окислительным стрессом, вызывает повреждение клеток, а сами поврежденные макромолекулы могут вести себя как и / или стать ROS. Следовательно, мозг с его богатым содержанием липидов, высокой потребностью в энергии и слабой антиоксидантной способностью становится легкой мишенью чрезмерного окислительного воздействия. Фосфолипиды в мозге являются особенно уязвимыми объектами для ROS-опосредованного перекисного окисления, но белки и ДНК также являются мишенью для ROS, что становится особенно проблематичным при старении, так как сообщается, что в «старом мозге» обнаруживаются высокие уровни мутаций, вызванных окислительным стрессом, в митохондриальном ДНК. Следовательно, накопление ROS представляет собой угрозу нейронов , которая, если она превышает или минует противодействующие механизмы, может вызвать значительное повреждение нейронов.

Влияние оксидативного стресса на структуры мозга

Биохимически очевидно, что разные нейроны имеют разные уровни уязвимости к окислительному стрессу. Например, клетки гиппокампа, миндалины и мозжечка в некоторых исследованиях были признаны наиболее восприимчивыми к окислительному стрессу и, следовательно, они, как предполагается, первыми подвергаются структурно — функциональному повреждению.

В нескольких исследованиях было высказано предположение, что пирамидные клетки CA3 и гранулярные клетки зубчатой ​​извилины (DG) являются областями, подверженными окислительному стрессу, тогда как , другие авторы сообщали , что пирамидные клетки CA1 более восприимчивы к окислительному повреждению. Независимо от этого, специфическое для региона повышение уровня окислительного стресса в зонах CA1 и CA3 Cornu Ammis является важным и может иметь значительные функциональные последствия для мозга. Это особенно важно, поскольку гиппокамп играет преимущественную роль в обучении и функции памяти, а вентральный гиппокамп участвует в генезе тревоге и депрессии.

Хорошо известно, что система DG-CA3 гиппокампа регулирует структурную пластичность, регенеративную / ремоделирующую способность, а также факторы нейрогенеза, такие как нейротрофический фактор мозга. Также было высказано предположение, что пирамидальные клетки CA1 и CA3 и гранулярные клетки DG очень чувствительны к окислительному повреждению. Таким образом, окислительное повреждение функции DG-CA может уменьшить пролиферацию клеток, нарушить способность ремоделирования, изменить структурную пластичность и нарушить нейрогенез, коллективно нарушая нормальную синаптическую нейротрансмиссию.

Миндалина и префронтальная кора

Миндалина и префронтальная кора могут в процессе оксидативного стресса подвергаться определенным изменениям, касающимся , в частности, дендритов, о чем свидетельствуют ситуации экспериментального хронического стресса. Также сообщалось о дендритном сокращении медиального региона префронтальной коры и росте дендритов в миндалевидных нейронах в ответ на стресс. Известно, что стрессовые стимулы изменяют префронтальную дендритную архитектуру и нейронную связность внутри PFC. Интересно отметить, что более высокая уязвимость гиппокампа и миндалины к окислительному стрессу и разрушению системы антиоксидантной защиты очевидна. Поэтому представляется весьма вероятным, что окислительный стресс в мозге нарушает биохимическую целостность гиппокампа и миндалины. Понятны и вызванные окислительным стрессом нейроэндокринные изменения в миндалине, включая гиперактивность миндалины и сокращение дендритов, что может дополнительно усиливать синаптические нарушения, нарушая проекции гиппокампа и миндалины.

Читайте также:  Кто чувствует боль больнее

Кроме того, свободные радикалы , как известно, окисляют внеклеточные участки глутаматэргических N — метил — д -аспартата рецепторов, что приводит к ослаблению LTP и синаптической нейротрансмиссии

Антиоксиданты

В мозге действуют два вида защитных механизмов для борьбы с угрозой, создаваемой ROS: антиоксидантная ферментная система и низкомолекулярные антиоксиданты.

Антиоксидантная ферментная система включает супероксиддисмутазу (SOD), глиоксалазу, глутатионредуктазу, глутатионпероксидазу и каталазу (CAT). Ферменты SOD, в том числе Cu-Zn SOD и Mn-SOD, способствуют спонтанной дисмутации супероксидных радикалов с образованием H 2 O 2 , который затем удаляется ферментами CAT и глутатионпероксидазы.

Низкомолекулярные антиоксиданты включают глутатион, мочевую кислоту, аскорбиновую кислоту и мелатонин, которые обеспечивают нейтрализующие функции, вызывая хелатирование переходных металлов. Глутатион, который встречается в восстановленном (GSH), а также в окисленном виде (глутатион дисульфид), является наиболее важным неферментативным эндогенным антиоксидантом и может регенерироваться глутатионредуктазой с потреблением NADPH . Таким образом поддерживаются оптимальные уровни сниженного GSH. Эндогенное отношение GSH к глутатиондисульфиду считается показателем окислительно-восстановительного гомеостаза в клетке. Более высокие уровни GSH также служат кофактором для других ферментов, включая глиоксалазу и пероксидазу.

В ответ на окислительный и нитрозативный стресс клетки повышают свою антиоксидантную защиту посредством активации фактора, связанного с эритроидным фактором 2 (Nrf2) — важного фактора транскрипции. Nrf2 является ключевым компонентом этой системы контроля и распознает антиоксидантный элемент ответа (ARE), обнаруженный в промоторных областях многих генов, которые кодируют антиоксиданты и ферменты детоксикации, такие как гем-оксигеназы 1 (HO-1), NAD (P) H-дегидрогеназы хинона 1, SOD1, глутатионпероксидаза 1 (GPx1) и CAT. Таким образом, активация пути Nrf2 происходит для борьбы с накоплением видов ROS и RNS. Благодаря своим защитным свойствам Nrf2 был предложен в качестве фармакологической мишени при патологиях с нейровоспалительными и окислительными свойствами, включая нейродегенеративные и психоневрологические заболевания. При активации Nrf2 увеличивает экспрессию нескольких эндогенных антиоксидантов. А при стойком воспалении и повышенных уровнях ROS, как это наблюдается в течение нескольких эпизодов — обострений психического расстройства , механизмы антиоксидантной защиты тканей «насыщаются» до такой степени, что становятся неэффективными. Цитозольные ферменты, такие как глиоксалаза I путем детоксикации метилглиоксаля, обеспечивают защиту от окислительного повреждения. Метилглиоксаль генерирует высокоокислительные конечные продукты гликирования и может дополнительно вызывать окислительный стресс и вызывать гибель клеток.

Сегодня ясно, что активные формы кислорода играют важнейшую патогенетическую роль и что накопление активных форм кислорода повышает восприимчивость мозговой ткани к повреждению. Механизмы, с помощью которых активные формы кислорода вызывают повреждение ткани головного мозга, не совсем понятны, но сообщалось, что ROS запускают множество молекулярных каскадов, которые повышают проницаемость гематоэнцефалического барьера и изменяют морфологию мозга, вызывая, таким образом, нейровоспаление и гибель нейронов. Вовлечение гипоталамо-гипофизарно-надпочечниковой оси, сигнализации опосредованного рецептора глюкокортикоидов, токсичность глутамата, и нарушения N — метил — д -аспартата рецепторных систем сигнализации рассматривались , в качестве предполагаемых звеньев патогенеза этого процесса.

Таким образом, имеются свидетельства увеличения окислительного повреждения головного мозга при развитии патологий центральной нервной системы для нейродегенеративных заболеваний, включая болезнь Альцгеймера, болезнь Паркинсона и боковой амиотрофический склероз, цереброваскулярные расстройства, демиелинизирующие заболевания и психические расстройства. Несмотря на то, что окислительный стресс в основном связан с нейродегенеративными расстройствами, такими как болезнь Альцгеймера, болезнь Хантингтона и болезнь Паркинсона, его участие в нервно-психических расстройствах,включая тревожные расстройства и депрессию также не вызывает сомнений.

Нейродегенеративные расстройства

Болезнь Альцгеймера, болезнь Паркинсона и болезнь Хантингтона — это часто встречающиеся нейродегенеративные расстройства, патологические процессы при которых включают нейротоксическую агрегацию специфических белков в мозге. Накопление аномально свернутых тау- и амилоидных β- белков происходит при болезни Альцгеймера, а α-синуклеин и мутантный белок Хантингтона (mHtt) накапливаются при болезни Паркинсона и болезни Хантингтона, соответственно. Причинно-следственная связь между окислительным стрессом и этими белковыми агрегатами была доказана. В некоторых исследованиях сообщалось о возрастном повышении уровня активных форм кислорода , вызванного окислительным стрессом, как фактором, вносящеим свой вклад в формирование «нейронного налета» при болезни Альцгеймера, α- синуклеина и mHtt, а в других исследованиях указывалось на роль образования амилоидного β- белка при появлении ROS . Точно так же в отношении патологии при болезни Паркинсона (PD) , сообщалось , что окислительный стресс способствует альфа-synuclein агрегация в дофаминергических нейронах, и что α -synuclein дополнительно генерируют внутриклеточный ROS. В то время как накопление mHtt приводило к снижению количества антиоксидантного белка пероксиредоксина Prx1, сверхэкспрессия Prx1 дикого типа значительно снижала вызванную mHtt токсичность.

Психические расстройства

Участие механизмов окислительного стресса было также предполагается при некоторых психических заболеваниях, включая депрессию, тревожные расстройства, шизофрению и расстройства аутистического спектра. Предполагается, что низкий GSH-Px является фактором, способствующим структурным аномалиям мозга.

Депрессия

Повышенные уровни ROS и RNS и измененные уровни антиоксидантного глутатиона (GSH) были зарегистрированы в посмертных образцах головного мозга больных депрессией. . Фактически, механизмы окислительного стресса были предложены в качестве мишеней для новых антидепрессантов. Это представляется оправданным, учитывая случаи воспаления, окислительного и нитрозативного стресса, а также снижение уровней концентрации в плазме и активности некоторых ключевых антиоксидантов в образцах сыворотке больных депрессией. Также известна связь между депрессией и полиморфизмом в генах SOD и CAT. ).

Читайте также:  Тест бойко эмоциональное выгорание интерпретация

Шизофрения

Механизмы окислительного стресса также связаны с шизофренией и биполярным расстройством. Повышенные уровни активности SOD в плазме были зарегистрированы у пациентов с «хронической шизофренией», которым вводили антипсихотические препараты, и активность SOD отрицательно коррелировала с позитивными симптомами шизофрении. Уровни других антиоксидантов, включая глутатионпероксидазу (GSH-Px), также были вовлечены в патологический процесс при этом заболевании.

Биполярное аффективное расстройство

В нескольких исследованиях сообщалось, что у пациентов с биполярным расстройством наблюдаются значительные изменения в антиоксидантных ферментах, перекисном окислении липидов и уровнях оксида азота , что свидетельствует о роли свободных радикалов и антиоксидантов в патогенезе биполярного аффективного расстройства.

Терапия окислительного стресса

Возможно, жесткая регуляция окислительного стресса, либо путем усиления активности ферментов антиоксидантной защиты, либо путем непосредственного подавления прооксидантов, потенциально способна купировать острое или даже хроническое нейропсихиатрическое расстройство.

Окислительные стресс и антидепрессанты

Одна из гипотез предполагает, что антидепрессанты оказывают свое терапевтическое действие, подавляя провоспалительные цитокины и продукцию ROS / RNS или усиливая антиоксидантную защиту. Имеются убедительные данные, подтверждающие, что депрессия сопровождается окислительным стрессом и что, возможно, усиление антиоксидантной защиты является одним из механизмов, лежащих в основе нейропротекторного действия антидепрессантов.

Источник

Окислительный стресс – глобальная проблема медицины критических состояний. Часть 1

Часть первая: Патофизиология окислительного стресса. Антиоксиданты-антигипоксаты

Профессор, академик РАЕН и МАНЭБ Назаров. И.П.

Окислительный стресс определяется как неустойчивое состояние в организме между прооксидантами и антиоксидантами. Прооксидантные факторы включают все элементы, которые играют активную роль в повышенном образовании свободных радикалов или других реактивных видов кислорода. В этих процессах участвуют как клеточные механизмы (специфические ферменты, дефекты в митохондриальном дыхании), так и экзогенные факторы (радиация, курение, загрязнение воздуха, заболевания, травмы, операции, лекарства и другое). Поскольку образование производных кислорода и уровень антиоксидантной защитной системы организма приблизительно сбалансированы, то легко сдвинуть баланс в пользу производных кислорода и нарушить биохимию клетки. Эта диспропорция называется окислительным стрессом.

Окислительный стресс является патогенетической основой критических состояний, изменения проницаемости клеточных мембран, функционирования мембраносвязанных ферментов и, в конечном итоге, приводит к тяжелым нарушениям клеточного метаболизма (С.С.Белоусов с соавт., 1998).

Фотоизображение клеток при помощи конфокального микроскопа

Здоровая клетка Белковые агрегаты, образующиеся в клетках

при окислительном процессе

Рис. 1. Патологическая роль окислительного стресса

Причиной развития окислительного стресса (ОС) является накопление в организме избытка свободных радикалов. Короткоживущие нестабильные радикалы это небольшие молекулы ОН гидроксил радикал 02– – и большие радикальные молекулы, несущие так называемый центрированный радикал, в котором неспаренный электрон локализован около какого-либо атома этой молекулы (углерод-центрированные радикалы R-CH2-СН -CН2. или углерод-кислород-центрированные радикалы R-00 ) кислорода. Долгоживущие стабильные радикалы, когда неспаренный электрон делокализован между многими атомами (аскорбат-радикал, радикалы коэнзима Q, токофероксил-радикал).

Стабильность центрированного радикала зависит от положения окружающих его химических групп в молекуле. Так, например, некоторые нитроксильные радикалы, хотя и имеют не делокализованный электрон у атома кислорода, но стабильны благодаря наличию СН3-групп, которые «экранируют» радикальный центр от контакта с другими молекулами.

Сталкиваясь с молекулой, свободный радикал отрывает от нее атом водорода (рис.2). Образуется валентно насыщенная молекула, которая превращается в свободный радикал. Он может оторвать атом водорода от другой молекулы или прореагировать с другим радикалом или молекулой кислорода. Пероксидный радикал ROO отрывает атом водорода от другой молекулы и образуется органический пероксид ROOH. Эта вырожденная цепная реакция называется ПРОЦЕССОМ АВТООКИСЛЕНИЯ УГЛЕВОДОРОДОВ ИЛИ СВОБОДНО-РАДИКАЛЬНЫМ ОКИСЛЕНИЕМ (СРО).

Рис. 2. Свободно-радикальное окисление

Базисными механизмами патологии при любых критических состояниях являются свободно-радикальные процессы и изменения свойств биомембран клеток. При ишемии тканей, особенно мозга и миокарда, главная патологическая роль свободных радикалов заключается в том, что они активно взаимодействуют с молекулами, формирующими нейрональные и внутриклеточные мембраны. Повышается вязкость мембран, утрачивается их пластичность и функциональное состояние.

Восстановление кровотока в ранее ишемизированных тканях также представляет определенную опасность. Реперфузия обуславливает многократное повышение парциального давления кислорода с дальнейшим повышением свободно-радикальных процессов. При этом повреждается эндотелий капилляров, антикоагулянтная активность которых трансформируется в прокоагулянтную.

Лейкоциты и тромбоциты вследствие увеличивающейся адгезии закупоривают церебральные капилляры. Усугубляется этот процесс и увеличением ригидности эритроцитов, что резко усиливает нарушение оксигенации тканей, особенно мозга. Угнетаются процессы фибринолиза крови, расширяется зона повреждения тканей, инфаркта мозга, усиливается отек мозга. Имеется прямая зависимость между накоплением продуктов ПОЛ и тяжестью поражения мозга и других тканей. Наряду с этим активируются гены, ответственные за программированную гибель клетки – апоптоз.

Универсальные патогенетические механизмы патологических состояний:

1. Чрезмерное, неконтролируемое эндогенной антиоксидантной системой (АОС) усиление процессов ПОЛ.

2. ГИПОКСИЯ – недостаточное снабжение или потребление кислорода клетками и тканями организма. При этом гипоксия и ПОЛ усиливают взаимно друг друга, что ведет к нарушениям энергетических и метаболических процессов в клетках и тканях (рис.3).

Причины инициации (усиления) ПОЛ:

  1. Стресс (любого происхождения);
  2. Ишемия;
  3. Гипоксия;
  4. Реперфузия тканей (реперфузионный синдром);
  5. Воспаление (асептическое или бактериальное);
  6. Недостаточная активность физиологической антиоксидантной системы (относительная или абсолютная).

Основные патологические процессы, инициируемые чрезмерной активацией ПОЛ:

I. КЛЕТОЧНО-ТКАНЕВОЙ УРОВЕНЬ:

  • нарушение проницаемости клеточной мембраны и мембран клеточных органелл
  • чрезмерное накопление свободных радикалов внутри клетки;
  • выход лизосомальных ферментов внутрь клетки;
  • накопление внутри клетки ионов Са++;
Читайте также:  Как справиться с чувством горя

4. Апаптоз и некроз клеток;

5. Нарушение клеточной рецепции;

6. Энергетические и метаболические нарушения.

II. ОРГАНЫ И СИСТЕМЫ:

1. Функциональные нарушения;

2. Органическая патология.

Рис. 3. Окислительный стресс при гипоксии

Конечно, в организме существует эндогенная антиоксидантная система, но при критических уровнях гипоксии и ПОЛ она несостоятельна. Антиоксидантнаясистема (АОС) организма состоит из ферментов и водорастворимых, и жирорастворимых субстратов. Главным механизмом антиоксидантной защиты в естественных условиях является фермент супероксиддисмутаза (СОД), оксидность которой позволяет инактивировать свободные радикалы в месте образования, не допуская их диффузии.

Большинство клеток может переносить умеренную степень окислительного стресса благодаря тому, что они обладают репаративной системой, выявляющей и удаляющей поврежденные окислением молекулы, которые затем заменяются. Кроме того, клетки могут повысить свою антиоксидантную защиту в ответ наокислительный стресс. Однако при выраженном окислительном стрессе все молекулы живых организмов (липиды, белки, нуклеиновые кислоты и углеводы) могут быть потенциальными мишенями окислительного повреждения.

Поскольку формирование тканевой гипоксии, ПОЛ, митохондриальная дисфункция признаны пусковым звеном развития типового патологического процесса, использование антигипоксантов и антиоксидантов патогенетически обосновано при любой острой патологии.

Термин «антиоксиданты» появился ещё в 60-х годах XX века благодаря исследованиям Б. Н. Тарусова (1954), Н. М. Эмануэля (1963). Б. Н.Тарусов установил роль липидов, особенно ненасыщенных жирных кислот, как одного из основных субстратов биохимических процессов, провел скрининг радиозащитного влияния цистеина, глутатиона, тиомочевины. Н. М. Эмануэль и его ученики не только определили механизм действия антиоксидантов, но также дали определение антиоксидантов как соединений, угнетающих развитие свободнорадикального окисления.

Препараты антиоксиданты – это лекарственные средства различного химического строения, тормозящие или блокирующие процессы свободнорадикального окисления и/или способствующие увеличению в организме уровня веществ с антиокислительным действием (рис. 4).

По своим химическим свойствам антиоксиданты (АО) подразделяются на 2 группы: “ловушки радикалов”, непосредственно взаимодействующие сосвободными радикалами и “скавенжеры” (уборщики), разлагающие продуктысвободно – радикального окисления (СРО) с их последующей инактивацией и утилизацией.

Рис. 4. Механизм действия антиоксидантов

Разработано и изучается в настоящее время большое количество препаратов с антигипоксантными-антиоксидантными свойствами (мексидол, цитофлавин, танакан, актовегин, кортексин, цитофлавин, ПК-мерц, аминалон, цераксон, эспалипон, церебро и др.). Многие из них уже показали свою высокую эффективность у реанимационных больных, особенно в нейрореаниматологии (это отдельная тема). Однако в научном плане ОС, его значимость в критических состояниях и коррекция антиоксидантами (ОИМ, ЧМТ, кровопотеря, операции, анестезии и т.д.) изучены крайне, мало. А в практическом приложении мониторинг степени ОС и эффективность его коррекции антиоксидантами в больницах вообще не проводится.

Причинами такого положения, прежде всего, являются низкие знания врачей по ОС. Читая лекции на курсах повышения квалификации, мы убедились в том, что анестезиологи-реаниматологи слабо ориентируются в это проблеме. Уместно вспомнить слова В.И.Вернадского: «Нет неизлечимых заболеваний, есть недостаток знаний». Сдерживается применение антиоксидантов в практическом здравоохранении полным отсутствием в лабораториях и отделениях больниц аппаратуры, измеряющей и мониторирующей изменения АОС и ОС больных, не включение в «стандарты» лечения (за исключением терапии инсультов) данных препаратов. Между тем эмпирическая медицина уже опережает научные разработки и «стандарты» в лечении критических состояний. Так в Красноярской краевой больнице уже накоплен многолетний положительный опыт использования антиоксидантов-антигипоксантов в лечении тяжелой ожоговой и черепно-мозговой травмы, гнойно-септических состояний, операциях на головном мозге и сердце, комах различной этиологии.

На примере только одного препарата мексидола, из обширной группы антиоксидантов, можно понять насколько полезны и необходимы в интенсивной терапии критических состояний эти средства.

Мексидол – международное название оксиметилэтилперидина сукцинат. Обладает высокой биодоступностью и липофильностью. Быстро переходит из кровеносного русла в органы и ткани и быстро элиминируется из организма. Благодаря наличию в его составе производного 3-оксипиридина, являющегося активным носителем, проникает внутрь клетки и митохондрий (Дюмаев К.Н., 1995). Препарат практически не токсичен.

Рис. 5. Особенности реакции цикла Кребса, связанной с сукцинатом

1. Окисление сукцината – обязательное условие каталитического действия интермедиата на усвоение клеткой кислорода.

2. Для пополнения пула органических кислот достаточно введения одного сукцината.

3. Активность сукцинатдегидрогеназы не зависит от концентрации НАД и НАДхН.

4. Мощность системы энергопродукции, использующей ЯК, в сотни раз превосходит все другие системы.

5. Феномен быстрого окисления сукцината в цитоплазме клеток с восстановлением динуклеотидов.

Производные 3-оксипиридинов (как составная часть мексидола):

  1. Играют большую роль в обмене веществ.
  2. Необходимы для нормального функционирования ЦНС.
  3. Входят в состав ферментов, осуществляющих декарбоксилирование и периаминирование аминокислот.
  4. Участвуют в обмене триптофана, метионина, цистеина, гистамина, глутаминовой и других аминокислот.
  5. Участвуют в процессах липидного обмена.

Проведенные экспериментальные и клинические исследования показали эффективность применения антиоксидантов в лечении ОИМ И ОНМК. При ишемии миокарда возникает ограничение зоны некроза в миокарде (рис.6); усиление биоэлектрической активности сердца; улучшение гемодинамики и толерантности сердца к нагрузкам.

Рис. 6. Ограничение зоны некроза миокарда мексидолом

Рис. 7. Влияние антиоксидантов на продолжительность жизни

Источник

Оцените статью