Окислительный стресс
Опубликовано пн, 29/07/2019 — 16:04
Биохимическая целостность мозга жизненно важна для нормального функционирования центральной нервной системы (ЦНС). Одним из факторов, способствующих церебральной биохимической недостаточности, является химический процесс, называемый окислительным стрессом.
Окислительный стресс возникает при чрезмерной продукции свободных радикалов в результате недостаточности противодействующей системы антиоксидантного ответа. Мозг с его высоким потреблением кислорода и высоким содержанием липидов очень чувствителен к окислительному стрессу. Следовательно, вызванное окислительным стрессом повреждение головного мозга обладает выраженным потенциалом для негативного воздействия на нормальные функции ЦНС.
Этиологические факторы окислительного стресса
Возможно, психологический стресс нарушает окислительно-антиоксидантный баланс в мозге, вызывая нарушение функции антиоксидантных ферментов. Это приводит к истощению глутатиона и увеличивает окислительный стресс. Одновременно возникающая токсичность глутамата, дисбаланс кальция и митохондриальное нарушение совместно усиливают окислительный стресс, вызывая биохимические расстройства в мозге. Это нарушает нейроциркуляцию и ослабляет гиппокампальные, миндалевидные и корковые связи, в конечном итоге вызывая поведенческие и когнитивные нарушения
Патогенез окислительного стресса
Окислительное фосфорилирование, происходящее в митохондриях, является основным источником АТФ. В качестве побочного продукта этот процесс приводит к образованию свободных радикалов или активных форм кислорода (ROS), активных форм азота (RNS) и радикалов, содержащих углерод и серу. В умеренных или низких количествах ROS считаются необходимыми для развития и функционирования нейронов, тогда как слишком высокие уровни опасны. Генерируемая ROS закись азота и оксид углерода способствуют важным физиологическим функциям, таким как длительное потенцирование (LTP) посредством глутамат-зависимых механизмов. В нормальных условиях антиоксидантная система нейтрализует вредные эффекты продукции ROS во время аэробного метаболизма, и таким образом мозг эффективно регулирует потребление кислорода и способность к выработке окислительно-восстановительного потенциала. Когда продукция ROS превышает поглощающую способность системы антиоксидантного ответа, происходит интенсивное окисление белка и перекисное окисление липидов, вызывающее окислительное повреждение, клеточную дегенерацию и даже функциональное снижение активности мозга. Например, высокие концентрации ROS, как сообщается в литературе, уменьшают LTP и синаптическую передачу сигналов и механизмы пластичности мозга.
Окислительный стресс часто описывается как «саморазрушающий» феномен на основании наблюдений, поскольку чрезмерное высвобождение активных форм кислорода , вызванное окислительным стрессом, вызывает повреждение клеток, а сами поврежденные макромолекулы могут вести себя как и / или стать ROS. Следовательно, мозг с его богатым содержанием липидов, высокой потребностью в энергии и слабой антиоксидантной способностью становится легкой мишенью чрезмерного окислительного воздействия. Фосфолипиды в мозге являются особенно уязвимыми объектами для ROS-опосредованного перекисного окисления, но белки и ДНК также являются мишенью для ROS, что становится особенно проблематичным при старении, так как сообщается, что в «старом мозге» обнаруживаются высокие уровни мутаций, вызванных окислительным стрессом, в митохондриальном ДНК. Следовательно, накопление ROS представляет собой угрозу нейронов , которая, если она превышает или минует противодействующие механизмы, может вызвать значительное повреждение нейронов.
Влияние оксидативного стресса на структуры мозга
Биохимически очевидно, что разные нейроны имеют разные уровни уязвимости к окислительному стрессу. Например, клетки гиппокампа, миндалины и мозжечка в некоторых исследованиях были признаны наиболее восприимчивыми к окислительному стрессу и, следовательно, они, как предполагается, первыми подвергаются структурно — функциональному повреждению.
В нескольких исследованиях было высказано предположение, что пирамидные клетки CA3 и гранулярные клетки зубчатой извилины (DG) являются областями, подверженными окислительному стрессу, тогда как , другие авторы сообщали , что пирамидные клетки CA1 более восприимчивы к окислительному повреждению. Независимо от этого, специфическое для региона повышение уровня окислительного стресса в зонах CA1 и CA3 Cornu Ammis является важным и может иметь значительные функциональные последствия для мозга. Это особенно важно, поскольку гиппокамп играет преимущественную роль в обучении и функции памяти, а вентральный гиппокамп участвует в генезе тревоге и депрессии.
Хорошо известно, что система DG-CA3 гиппокампа регулирует структурную пластичность, регенеративную / ремоделирующую способность, а также факторы нейрогенеза, такие как нейротрофический фактор мозга. Также было высказано предположение, что пирамидальные клетки CA1 и CA3 и гранулярные клетки DG очень чувствительны к окислительному повреждению. Таким образом, окислительное повреждение функции DG-CA может уменьшить пролиферацию клеток, нарушить способность ремоделирования, изменить структурную пластичность и нарушить нейрогенез, коллективно нарушая нормальную синаптическую нейротрансмиссию.
Миндалина и префронтальная кора
Миндалина и префронтальная кора могут в процессе оксидативного стресса подвергаться определенным изменениям, касающимся , в частности, дендритов, о чем свидетельствуют ситуации экспериментального хронического стресса. Также сообщалось о дендритном сокращении медиального региона префронтальной коры и росте дендритов в миндалевидных нейронах в ответ на стресс. Известно, что стрессовые стимулы изменяют префронтальную дендритную архитектуру и нейронную связность внутри PFC. Интересно отметить, что более высокая уязвимость гиппокампа и миндалины к окислительному стрессу и разрушению системы антиоксидантной защиты очевидна. Поэтому представляется весьма вероятным, что окислительный стресс в мозге нарушает биохимическую целостность гиппокампа и миндалины. Понятны и вызванные окислительным стрессом нейроэндокринные изменения в миндалине, включая гиперактивность миндалины и сокращение дендритов, что может дополнительно усиливать синаптические нарушения, нарушая проекции гиппокампа и миндалины.
Кроме того, свободные радикалы , как известно, окисляют внеклеточные участки глутаматэргических N — метил — д -аспартата рецепторов, что приводит к ослаблению LTP и синаптической нейротрансмиссии
Антиоксиданты
В мозге действуют два вида защитных механизмов для борьбы с угрозой, создаваемой ROS: антиоксидантная ферментная система и низкомолекулярные антиоксиданты.
Антиоксидантная ферментная система включает супероксиддисмутазу (SOD), глиоксалазу, глутатионредуктазу, глутатионпероксидазу и каталазу (CAT). Ферменты SOD, в том числе Cu-Zn SOD и Mn-SOD, способствуют спонтанной дисмутации супероксидных радикалов с образованием H 2 O 2 , который затем удаляется ферментами CAT и глутатионпероксидазы.
Низкомолекулярные антиоксиданты включают глутатион, мочевую кислоту, аскорбиновую кислоту и мелатонин, которые обеспечивают нейтрализующие функции, вызывая хелатирование переходных металлов. Глутатион, который встречается в восстановленном (GSH), а также в окисленном виде (глутатион дисульфид), является наиболее важным неферментативным эндогенным антиоксидантом и может регенерироваться глутатионредуктазой с потреблением NADPH . Таким образом поддерживаются оптимальные уровни сниженного GSH. Эндогенное отношение GSH к глутатиондисульфиду считается показателем окислительно-восстановительного гомеостаза в клетке. Более высокие уровни GSH также служат кофактором для других ферментов, включая глиоксалазу и пероксидазу.
В ответ на окислительный и нитрозативный стресс клетки повышают свою антиоксидантную защиту посредством активации фактора, связанного с эритроидным фактором 2 (Nrf2) — важного фактора транскрипции. Nrf2 является ключевым компонентом этой системы контроля и распознает антиоксидантный элемент ответа (ARE), обнаруженный в промоторных областях многих генов, которые кодируют антиоксиданты и ферменты детоксикации, такие как гем-оксигеназы 1 (HO-1), NAD (P) H-дегидрогеназы хинона 1, SOD1, глутатионпероксидаза 1 (GPx1) и CAT. Таким образом, активация пути Nrf2 происходит для борьбы с накоплением видов ROS и RNS. Благодаря своим защитным свойствам Nrf2 был предложен в качестве фармакологической мишени при патологиях с нейровоспалительными и окислительными свойствами, включая нейродегенеративные и психоневрологические заболевания. При активации Nrf2 увеличивает экспрессию нескольких эндогенных антиоксидантов. А при стойком воспалении и повышенных уровнях ROS, как это наблюдается в течение нескольких эпизодов — обострений психического расстройства , механизмы антиоксидантной защиты тканей «насыщаются» до такой степени, что становятся неэффективными. Цитозольные ферменты, такие как глиоксалаза I путем детоксикации метилглиоксаля, обеспечивают защиту от окислительного повреждения. Метилглиоксаль генерирует высокоокислительные конечные продукты гликирования и может дополнительно вызывать окислительный стресс и вызывать гибель клеток.
Сегодня ясно, что активные формы кислорода играют важнейшую патогенетическую роль и что накопление активных форм кислорода повышает восприимчивость мозговой ткани к повреждению. Механизмы, с помощью которых активные формы кислорода вызывают повреждение ткани головного мозга, не совсем понятны, но сообщалось, что ROS запускают множество молекулярных каскадов, которые повышают проницаемость гематоэнцефалического барьера и изменяют морфологию мозга, вызывая, таким образом, нейровоспаление и гибель нейронов. Вовлечение гипоталамо-гипофизарно-надпочечниковой оси, сигнализации опосредованного рецептора глюкокортикоидов, токсичность глутамата, и нарушения N — метил — д -аспартата рецепторных систем сигнализации рассматривались , в качестве предполагаемых звеньев патогенеза этого процесса.
Таким образом, имеются свидетельства увеличения окислительного повреждения головного мозга при развитии патологий центральной нервной системы для нейродегенеративных заболеваний, включая болезнь Альцгеймера, болезнь Паркинсона и боковой амиотрофический склероз, цереброваскулярные расстройства, демиелинизирующие заболевания и психические расстройства. Несмотря на то, что окислительный стресс в основном связан с нейродегенеративными расстройствами, такими как болезнь Альцгеймера, болезнь Хантингтона и болезнь Паркинсона, его участие в нервно-психических расстройствах,включая тревожные расстройства и депрессию также не вызывает сомнений.
Нейродегенеративные расстройства
Болезнь Альцгеймера, болезнь Паркинсона и болезнь Хантингтона — это часто встречающиеся нейродегенеративные расстройства, патологические процессы при которых включают нейротоксическую агрегацию специфических белков в мозге. Накопление аномально свернутых тау- и амилоидных β- белков происходит при болезни Альцгеймера, а α-синуклеин и мутантный белок Хантингтона (mHtt) накапливаются при болезни Паркинсона и болезни Хантингтона, соответственно. Причинно-следственная связь между окислительным стрессом и этими белковыми агрегатами была доказана. В некоторых исследованиях сообщалось о возрастном повышении уровня активных форм кислорода , вызванного окислительным стрессом, как фактором, вносящеим свой вклад в формирование «нейронного налета» при болезни Альцгеймера, α- синуклеина и mHtt, а в других исследованиях указывалось на роль образования амилоидного β- белка при появлении ROS . Точно так же в отношении патологии при болезни Паркинсона (PD) , сообщалось , что окислительный стресс способствует альфа-synuclein агрегация в дофаминергических нейронах, и что α -synuclein дополнительно генерируют внутриклеточный ROS. В то время как накопление mHtt приводило к снижению количества антиоксидантного белка пероксиредоксина Prx1, сверхэкспрессия Prx1 дикого типа значительно снижала вызванную mHtt токсичность.
Психические расстройства
Участие механизмов окислительного стресса было также предполагается при некоторых психических заболеваниях, включая депрессию, тревожные расстройства, шизофрению и расстройства аутистического спектра. Предполагается, что низкий GSH-Px является фактором, способствующим структурным аномалиям мозга.
Депрессия
Повышенные уровни ROS и RNS и измененные уровни антиоксидантного глутатиона (GSH) были зарегистрированы в посмертных образцах головного мозга больных депрессией. . Фактически, механизмы окислительного стресса были предложены в качестве мишеней для новых антидепрессантов. Это представляется оправданным, учитывая случаи воспаления, окислительного и нитрозативного стресса, а также снижение уровней концентрации в плазме и активности некоторых ключевых антиоксидантов в образцах сыворотке больных депрессией. Также известна связь между депрессией и полиморфизмом в генах SOD и CAT. ).
Шизофрения
Механизмы окислительного стресса также связаны с шизофренией и биполярным расстройством. Повышенные уровни активности SOD в плазме были зарегистрированы у пациентов с «хронической шизофренией», которым вводили антипсихотические препараты, и активность SOD отрицательно коррелировала с позитивными симптомами шизофрении. Уровни других антиоксидантов, включая глутатионпероксидазу (GSH-Px), также были вовлечены в патологический процесс при этом заболевании.
Биполярное аффективное расстройство
В нескольких исследованиях сообщалось, что у пациентов с биполярным расстройством наблюдаются значительные изменения в антиоксидантных ферментах, перекисном окислении липидов и уровнях оксида азота , что свидетельствует о роли свободных радикалов и антиоксидантов в патогенезе биполярного аффективного расстройства.
Терапия окислительного стресса
Возможно, жесткая регуляция окислительного стресса, либо путем усиления активности ферментов антиоксидантной защиты, либо путем непосредственного подавления прооксидантов, потенциально способна купировать острое или даже хроническое нейропсихиатрическое расстройство.
Окислительные стресс и антидепрессанты
Одна из гипотез предполагает, что антидепрессанты оказывают свое терапевтическое действие, подавляя провоспалительные цитокины и продукцию ROS / RNS или усиливая антиоксидантную защиту. Имеются убедительные данные, подтверждающие, что депрессия сопровождается окислительным стрессом и что, возможно, усиление антиоксидантной защиты является одним из механизмов, лежащих в основе нейропротекторного действия антидепрессантов.
Источник
Осмотический шок — Osmotic shock
Осмотический шок или осмотический стресс — это физиологическая дисфункция, вызванная внезапным изменением концентрации растворенного вещества вокруг клетки , которое вызывает быстрое изменение движения воды через ее клеточную мембрану . В условиях высоких концентраций солей , субстратов или любого растворенного вещества в супернатанте вода выводится из клеток посредством осмоса . Это также подавляет транспорт субстратов и кофакторов в клетку, таким образом «шокируя» клетку. С другой стороны, при низких концентрациях растворенных веществ вода проникает в клетку в больших количествах, вызывая ее набухание и либо разрыв, либо апоптоз .
У всех организмов есть механизмы реагирования на осмотический шок с датчиками и сетями передачи сигналов, которые предоставляют клетке информацию об осмолярности окружающей среды; эти сигналы активируют реакцию на экстремальные условия. Хотя одноклеточные организмы более уязвимы к осмотическому шоку, поскольку они напрямую подвергаются воздействию окружающей среды, клетки крупных животных, таких как млекопитающие, все еще страдают от этого стресса в некоторых условиях. Текущие исследования также показывают, что осмотический стресс в клетках и тканях может вносить значительный вклад во многие заболевания человека.
У эукариот кальций действует как один из основных регуляторов осмотического стресса. Уровень внутриклеточного кальция повышается при гипоосмотическом и гиперосмотическом стрессах.
СОДЕРЖАНИЕ
Механизмы восстановления и толерантности
При гиперосмотическом стрессе
внеклеточная секвестрация кальция альбумином крови .
Преходящее внутриклеточное повышение Ca 2+ .
При гипоосмотическом стрессе
увеличение внутриклеточного Ca 2+ и высвобождение внеклеточного АТФ
Кальцийзависимый отток осмолита таурина . Было обнаружено, что удаление внеклеточного кальция предотвращает отток таурина на 50%, а удаление внеклеточного Ca 2+ и одновременное истощение внутриклеточных запасов Ca 2+ с помощью тапсигаргина уменьшило его на 85%.
Осмотические повреждения у человека
Смотрите также
- Осмолит
- Мио- Инозитол
- Таурин и Таурин-транспортная АТФаза
- Креатин
- Бетаины
- Триметилглицин — бетаин и метаболит холина
- Сорбитол
- Глицерофосфохолин
Рекомендации
Эта статья по биологии — незавершенная . Вы можете помочь Википедии, расширив ее .
Источник