Окислительный стресс
Опубликовано пн, 29/07/2019 — 16:04
Биохимическая целостность мозга жизненно важна для нормального функционирования центральной нервной системы (ЦНС). Одним из факторов, способствующих церебральной биохимической недостаточности, является химический процесс, называемый окислительным стрессом.
Окислительный стресс возникает при чрезмерной продукции свободных радикалов в результате недостаточности противодействующей системы антиоксидантного ответа. Мозг с его высоким потреблением кислорода и высоким содержанием липидов очень чувствителен к окислительному стрессу. Следовательно, вызванное окислительным стрессом повреждение головного мозга обладает выраженным потенциалом для негативного воздействия на нормальные функции ЦНС.
Этиологические факторы окислительного стресса
Возможно, психологический стресс нарушает окислительно-антиоксидантный баланс в мозге, вызывая нарушение функции антиоксидантных ферментов. Это приводит к истощению глутатиона и увеличивает окислительный стресс. Одновременно возникающая токсичность глутамата, дисбаланс кальция и митохондриальное нарушение совместно усиливают окислительный стресс, вызывая биохимические расстройства в мозге. Это нарушает нейроциркуляцию и ослабляет гиппокампальные, миндалевидные и корковые связи, в конечном итоге вызывая поведенческие и когнитивные нарушения
Патогенез окислительного стресса
Окислительное фосфорилирование, происходящее в митохондриях, является основным источником АТФ. В качестве побочного продукта этот процесс приводит к образованию свободных радикалов или активных форм кислорода (ROS), активных форм азота (RNS) и радикалов, содержащих углерод и серу. В умеренных или низких количествах ROS считаются необходимыми для развития и функционирования нейронов, тогда как слишком высокие уровни опасны. Генерируемая ROS закись азота и оксид углерода способствуют важным физиологическим функциям, таким как длительное потенцирование (LTP) посредством глутамат-зависимых механизмов. В нормальных условиях антиоксидантная система нейтрализует вредные эффекты продукции ROS во время аэробного метаболизма, и таким образом мозг эффективно регулирует потребление кислорода и способность к выработке окислительно-восстановительного потенциала. Когда продукция ROS превышает поглощающую способность системы антиоксидантного ответа, происходит интенсивное окисление белка и перекисное окисление липидов, вызывающее окислительное повреждение, клеточную дегенерацию и даже функциональное снижение активности мозга. Например, высокие концентрации ROS, как сообщается в литературе, уменьшают LTP и синаптическую передачу сигналов и механизмы пластичности мозга.
Окислительный стресс часто описывается как «саморазрушающий» феномен на основании наблюдений, поскольку чрезмерное высвобождение активных форм кислорода , вызванное окислительным стрессом, вызывает повреждение клеток, а сами поврежденные макромолекулы могут вести себя как и / или стать ROS. Следовательно, мозг с его богатым содержанием липидов, высокой потребностью в энергии и слабой антиоксидантной способностью становится легкой мишенью чрезмерного окислительного воздействия. Фосфолипиды в мозге являются особенно уязвимыми объектами для ROS-опосредованного перекисного окисления, но белки и ДНК также являются мишенью для ROS, что становится особенно проблематичным при старении, так как сообщается, что в «старом мозге» обнаруживаются высокие уровни мутаций, вызванных окислительным стрессом, в митохондриальном ДНК. Следовательно, накопление ROS представляет собой угрозу нейронов , которая, если она превышает или минует противодействующие механизмы, может вызвать значительное повреждение нейронов.
Влияние оксидативного стресса на структуры мозга
Биохимически очевидно, что разные нейроны имеют разные уровни уязвимости к окислительному стрессу. Например, клетки гиппокампа, миндалины и мозжечка в некоторых исследованиях были признаны наиболее восприимчивыми к окислительному стрессу и, следовательно, они, как предполагается, первыми подвергаются структурно — функциональному повреждению.
В нескольких исследованиях было высказано предположение, что пирамидные клетки CA3 и гранулярные клетки зубчатой извилины (DG) являются областями, подверженными окислительному стрессу, тогда как , другие авторы сообщали , что пирамидные клетки CA1 более восприимчивы к окислительному повреждению. Независимо от этого, специфическое для региона повышение уровня окислительного стресса в зонах CA1 и CA3 Cornu Ammis является важным и может иметь значительные функциональные последствия для мозга. Это особенно важно, поскольку гиппокамп играет преимущественную роль в обучении и функции памяти, а вентральный гиппокамп участвует в генезе тревоге и депрессии.
Хорошо известно, что система DG-CA3 гиппокампа регулирует структурную пластичность, регенеративную / ремоделирующую способность, а также факторы нейрогенеза, такие как нейротрофический фактор мозга. Также было высказано предположение, что пирамидальные клетки CA1 и CA3 и гранулярные клетки DG очень чувствительны к окислительному повреждению. Таким образом, окислительное повреждение функции DG-CA может уменьшить пролиферацию клеток, нарушить способность ремоделирования, изменить структурную пластичность и нарушить нейрогенез, коллективно нарушая нормальную синаптическую нейротрансмиссию.
Миндалина и префронтальная кора
Миндалина и префронтальная кора могут в процессе оксидативного стресса подвергаться определенным изменениям, касающимся , в частности, дендритов, о чем свидетельствуют ситуации экспериментального хронического стресса. Также сообщалось о дендритном сокращении медиального региона префронтальной коры и росте дендритов в миндалевидных нейронах в ответ на стресс. Известно, что стрессовые стимулы изменяют префронтальную дендритную архитектуру и нейронную связность внутри PFC. Интересно отметить, что более высокая уязвимость гиппокампа и миндалины к окислительному стрессу и разрушению системы антиоксидантной защиты очевидна. Поэтому представляется весьма вероятным, что окислительный стресс в мозге нарушает биохимическую целостность гиппокампа и миндалины. Понятны и вызванные окислительным стрессом нейроэндокринные изменения в миндалине, включая гиперактивность миндалины и сокращение дендритов, что может дополнительно усиливать синаптические нарушения, нарушая проекции гиппокампа и миндалины.
Кроме того, свободные радикалы , как известно, окисляют внеклеточные участки глутаматэргических N — метил — д -аспартата рецепторов, что приводит к ослаблению LTP и синаптической нейротрансмиссии
Антиоксиданты
В мозге действуют два вида защитных механизмов для борьбы с угрозой, создаваемой ROS: антиоксидантная ферментная система и низкомолекулярные антиоксиданты.
Антиоксидантная ферментная система включает супероксиддисмутазу (SOD), глиоксалазу, глутатионредуктазу, глутатионпероксидазу и каталазу (CAT). Ферменты SOD, в том числе Cu-Zn SOD и Mn-SOD, способствуют спонтанной дисмутации супероксидных радикалов с образованием H 2 O 2 , который затем удаляется ферментами CAT и глутатионпероксидазы.
Низкомолекулярные антиоксиданты включают глутатион, мочевую кислоту, аскорбиновую кислоту и мелатонин, которые обеспечивают нейтрализующие функции, вызывая хелатирование переходных металлов. Глутатион, который встречается в восстановленном (GSH), а также в окисленном виде (глутатион дисульфид), является наиболее важным неферментативным эндогенным антиоксидантом и может регенерироваться глутатионредуктазой с потреблением NADPH . Таким образом поддерживаются оптимальные уровни сниженного GSH. Эндогенное отношение GSH к глутатиондисульфиду считается показателем окислительно-восстановительного гомеостаза в клетке. Более высокие уровни GSH также служат кофактором для других ферментов, включая глиоксалазу и пероксидазу.
В ответ на окислительный и нитрозативный стресс клетки повышают свою антиоксидантную защиту посредством активации фактора, связанного с эритроидным фактором 2 (Nrf2) — важного фактора транскрипции. Nrf2 является ключевым компонентом этой системы контроля и распознает антиоксидантный элемент ответа (ARE), обнаруженный в промоторных областях многих генов, которые кодируют антиоксиданты и ферменты детоксикации, такие как гем-оксигеназы 1 (HO-1), NAD (P) H-дегидрогеназы хинона 1, SOD1, глутатионпероксидаза 1 (GPx1) и CAT. Таким образом, активация пути Nrf2 происходит для борьбы с накоплением видов ROS и RNS. Благодаря своим защитным свойствам Nrf2 был предложен в качестве фармакологической мишени при патологиях с нейровоспалительными и окислительными свойствами, включая нейродегенеративные и психоневрологические заболевания. При активации Nrf2 увеличивает экспрессию нескольких эндогенных антиоксидантов. А при стойком воспалении и повышенных уровнях ROS, как это наблюдается в течение нескольких эпизодов — обострений психического расстройства , механизмы антиоксидантной защиты тканей «насыщаются» до такой степени, что становятся неэффективными. Цитозольные ферменты, такие как глиоксалаза I путем детоксикации метилглиоксаля, обеспечивают защиту от окислительного повреждения. Метилглиоксаль генерирует высокоокислительные конечные продукты гликирования и может дополнительно вызывать окислительный стресс и вызывать гибель клеток.
Сегодня ясно, что активные формы кислорода играют важнейшую патогенетическую роль и что накопление активных форм кислорода повышает восприимчивость мозговой ткани к повреждению. Механизмы, с помощью которых активные формы кислорода вызывают повреждение ткани головного мозга, не совсем понятны, но сообщалось, что ROS запускают множество молекулярных каскадов, которые повышают проницаемость гематоэнцефалического барьера и изменяют морфологию мозга, вызывая, таким образом, нейровоспаление и гибель нейронов. Вовлечение гипоталамо-гипофизарно-надпочечниковой оси, сигнализации опосредованного рецептора глюкокортикоидов, токсичность глутамата, и нарушения N — метил — д -аспартата рецепторных систем сигнализации рассматривались , в качестве предполагаемых звеньев патогенеза этого процесса.
Таким образом, имеются свидетельства увеличения окислительного повреждения головного мозга при развитии патологий центральной нервной системы для нейродегенеративных заболеваний, включая болезнь Альцгеймера, болезнь Паркинсона и боковой амиотрофический склероз, цереброваскулярные расстройства, демиелинизирующие заболевания и психические расстройства. Несмотря на то, что окислительный стресс в основном связан с нейродегенеративными расстройствами, такими как болезнь Альцгеймера, болезнь Хантингтона и болезнь Паркинсона, его участие в нервно-психических расстройствах,включая тревожные расстройства и депрессию также не вызывает сомнений.
Нейродегенеративные расстройства
Болезнь Альцгеймера, болезнь Паркинсона и болезнь Хантингтона — это часто встречающиеся нейродегенеративные расстройства, патологические процессы при которых включают нейротоксическую агрегацию специфических белков в мозге. Накопление аномально свернутых тау- и амилоидных β- белков происходит при болезни Альцгеймера, а α-синуклеин и мутантный белок Хантингтона (mHtt) накапливаются при болезни Паркинсона и болезни Хантингтона, соответственно. Причинно-следственная связь между окислительным стрессом и этими белковыми агрегатами была доказана. В некоторых исследованиях сообщалось о возрастном повышении уровня активных форм кислорода , вызванного окислительным стрессом, как фактором, вносящеим свой вклад в формирование «нейронного налета» при болезни Альцгеймера, α- синуклеина и mHtt, а в других исследованиях указывалось на роль образования амилоидного β- белка при появлении ROS . Точно так же в отношении патологии при болезни Паркинсона (PD) , сообщалось , что окислительный стресс способствует альфа-synuclein агрегация в дофаминергических нейронах, и что α -synuclein дополнительно генерируют внутриклеточный ROS. В то время как накопление mHtt приводило к снижению количества антиоксидантного белка пероксиредоксина Prx1, сверхэкспрессия Prx1 дикого типа значительно снижала вызванную mHtt токсичность.
Психические расстройства
Участие механизмов окислительного стресса было также предполагается при некоторых психических заболеваниях, включая депрессию, тревожные расстройства, шизофрению и расстройства аутистического спектра. Предполагается, что низкий GSH-Px является фактором, способствующим структурным аномалиям мозга.
Депрессия
Повышенные уровни ROS и RNS и измененные уровни антиоксидантного глутатиона (GSH) были зарегистрированы в посмертных образцах головного мозга больных депрессией. . Фактически, механизмы окислительного стресса были предложены в качестве мишеней для новых антидепрессантов. Это представляется оправданным, учитывая случаи воспаления, окислительного и нитрозативного стресса, а также снижение уровней концентрации в плазме и активности некоторых ключевых антиоксидантов в образцах сыворотке больных депрессией. Также известна связь между депрессией и полиморфизмом в генах SOD и CAT. ).
Шизофрения
Механизмы окислительного стресса также связаны с шизофренией и биполярным расстройством. Повышенные уровни активности SOD в плазме были зарегистрированы у пациентов с «хронической шизофренией», которым вводили антипсихотические препараты, и активность SOD отрицательно коррелировала с позитивными симптомами шизофрении. Уровни других антиоксидантов, включая глутатионпероксидазу (GSH-Px), также были вовлечены в патологический процесс при этом заболевании.
Биполярное аффективное расстройство
В нескольких исследованиях сообщалось, что у пациентов с биполярным расстройством наблюдаются значительные изменения в антиоксидантных ферментах, перекисном окислении липидов и уровнях оксида азота , что свидетельствует о роли свободных радикалов и антиоксидантов в патогенезе биполярного аффективного расстройства.
Терапия окислительного стресса
Возможно, жесткая регуляция окислительного стресса, либо путем усиления активности ферментов антиоксидантной защиты, либо путем непосредственного подавления прооксидантов, потенциально способна купировать острое или даже хроническое нейропсихиатрическое расстройство.
Окислительные стресс и антидепрессанты
Одна из гипотез предполагает, что антидепрессанты оказывают свое терапевтическое действие, подавляя провоспалительные цитокины и продукцию ROS / RNS или усиливая антиоксидантную защиту. Имеются убедительные данные, подтверждающие, что депрессия сопровождается окислительным стрессом и что, возможно, усиление антиоксидантной защиты является одним из механизмов, лежащих в основе нейропротекторного действия антидепрессантов.
Источник
Окислительный стресс как определить
Комплекс исследований, позволяющий оценить активность свободнорадикальных процессов в организме и состояние систем антиоксидантной защиты.
Оценка окислительного стресса, оценка антиоксидантной защиты.
Синонимы английские
Assessment of oxidative stress, evaluation of antioxidant protection.
Высокоэффективная жидкостная хроматография.
Какой биоматериал можно использовать для исследования?
Как правильно подготовиться к исследованию?
- Не принимать пищу в течение 2-3 часов до исследования, можно пить чистую негазированную воду.
- Не курить в течение 30 минут до исследования.
Общая информация об исследовании
Окислительный (оксидативный) стресс — состояние, при котором в организме слишком много свободных радикалов — молекул без одного электрона.
В нормальных условиях внутриклеточное содержание активных форм кислорода (ROS) поддерживается на низком уровне различными ферментными системами, участвующими в редокс-гомеостазе. Поэтому окислительный стресс можно рассматривать как дисбаланс между прооксидантами и антиоксидантами в организме. В течение последних двух десятилетий окислительный стресс был одной из самых острых проблем среди биологических исследователей во всем мире. Стресс можно определить как процесс измененного биохимического гомеостаза, вызванного психологическими, физиологическими или экологическими причинами (стрессорами). Любое изменение в гомеостазе приводит к увеличению производства свободных радикалов, значительно выше детоксикационной способности местных тканей. Эти избыточные свободные радикалы затем взаимодействуют с другими молекулами внутри клеток и вызывают окислительное повреждение белков, мембран и генов. В процессе этого часто образуется еще больше свободных радикалов, вызывая цепь разрушений. Окислительные повреждения связаны с причиной многих заболеваний, таких как сердечно-сосудистые заболевания, дегенерация нейронов и онкология, а также влияют на процесс старения.
Стресс может запускаться различными стрессорами, например экстремальными условиями окружающей среды, чрезмерными физическими упражнениями или полной иммобилизацией, недоеданием. Внешние факторы, такие как загрязнение, избыточная инсоляция и курение, также вызывают образование свободных радикалов. Стресс может быть острым или хроническим. Стрессор инициирует любой из факторов, играющих решающую роль в поддержании клеточного гомеостаза. Окислительный стресс возникает, когда гомеостатические процессы терпят неудачу, а генерация свободных радикалов намного превышает способность антиоксидантной защиты организма, тем самым способствуя повреждению клеток и тканей.
Окислительный стресс является сложным процессом. Его воздействие на организм зависит от типа окислителя, от места и интенсивности его производства, от состава и активности различных антиоксидантов, а также от способности восстановительных систем.
Термин «ROS» включает в себя все нестабильные (свободные) метаболиты молекулярного кислорода (O2), которые имеют более высокую реакционную способность, чем O2 (например, супероксидный радикал, гидроксильный радикал) и нерадикальные молекулы (например, перекись водорода (H2O2). Эти ROS генерируются как побочный продукт нормального аэробного метаболизма, но их уровень увеличивается при стрессе, что является основной опасностью для здоровья.
До 1-3% легочного поступления кислорода преобразуется в ROS. В условиях нормального метаболизма непрерывное образование свободных радикалов важно для нормальных физиологических функций, таких как генерация АТФ, различные катаболические, анаболические процессы и сопровождающие клеточные окислительно-восстановительные циклы.
Центральная нервная система чрезвычайно чувствительна к повреждению свободных радикалов из-за относительно небольшой общей антиоксидантной способности. ROS, продуцируемые в тканях, могут нанести прямой ущерб макромолекулам, таким как липиды, нуклеиновые кислоты и белки. Полиненасыщенные жирные кислоты являются одной из предпочтительных целей окисления для них. Кислородсодержащие радикалы, в частности радикал супероксидного аниона, гидроксильный радикал (ОН) и алкилпероксильный радикал (OOCR), являются мощными инициаторами перекисного окисления липидов, роль которых хорошо установлена в патогенезе широкого спектра заболевания (например, развитии атеросклероза, прогрессировании фиброза печени).
В результате перекисного окисления липидов в биологических системах накапливаются их конечные продукты, такие как малондиальдегид (MDA), 4-гидрокси-2-ноненол (4-HNE) и F2-изопростанты.
Основания ДНК также очень восприимчивы к окислению ROS, а преобладающим конечным продуктом этого взаимодействия является 8-гидрокси-2-дезоксигуанозин. В результате могут возникнуть мутации и делеции как в ядерной, так и в митохондриальной ДНК. Митохондриальная ДНК особенно подвержена окислительному повреждению из-за ее близости к первому источнику ROS и недостаточной восстановительной способности по сравнению с ядерной ДНК. Эти окислительные модификации приводят к функциональным изменениям в ферментативных и структурных белках, которые могут оказывать существенное физиологическое воздействие. Также хорошо установлена связь между окислительным стрессом и иммунной функцией организма. Механизм иммунной защиты использует повреждающие эффекты окислителей с защитной целью, используя ROS в уничтожении патогенов. В нескольких исследованиях была продемонстрирована взаимозависимость окислительного стресса, иммунной системы и воспаления. Все факторы, ответственные за окислительный стресс, прямо или косвенно участвуют в механизме защиты иммунной системы. Любые изменения, приводящие к иммуносупрессии, могут спровоцировать развитие болезни. Окислительная модификация белков не только изменяет их антигенный профиль, но также усиливает антигенность. Существует несколько примеров аутоиммунных заболеваний, возникающих в результате таких окислительных модификаций, а именно системная красная волчанка, сахарный диабет и диффузная склеродермия. Более того, окислительный стресс представляет дополнительную угрозу для тканей-мишеней, как в случае бета-клеток, продуцирующих инсулин. Окислительный стресс, вызванный неразрешенным и стойким воспалением, может быть основным фактором, влияющим на изменение динамики иммунных реакций. Эти изменения могут создать иммунологический хаос, который может привести к потере архитектурной целостности клеток и тканей, что в конечном итоге приведет к хроническим заболеваниям или онкологии.
Окислительный стресс может запускать развитие аллергии, аутоиммунных или нейродегенеративных заболеваний (например, болезнь Альцгеймера) наряду с измененным ростом клеток, хроническими инфекциями, ангиогенезом и раковыми заболеваниями. Старение является неотъемлемым процессом, характерным для всех живых клеток. Теория окислительного стресса в настоящее время является наиболее приемлемым объяснением старения, которое подтверждает, что увеличение ROS приводит к функциональным изменениям, патологическим состояниям и другим клинически наблюдаемым признакам старения. В нормальных условиях физиологичным является равновесие между уровнем антиоксидантов и клеточными прооксидантами. Окислительный стресс может быть запущен не только стрессорами, но и дефицитом антиоксидантов, приводящим к образованию избыточного количества активного кислорода или азота. Антиоксиданты являются первой линией на пути предотвращения развития стресса. Несколько первичных антиоксидантных ферментов (SOD, каталаза) и несколько пероксидаз катализируют сложный каскад реакций для превращения ROS в более стабильные молекулы, такие как вода и O2. Помимо первичных антиоксидантных ферментов, большое количество вторичных ферментов действуют в тесной связи с малыми молекулярными антиоксидантами с образованием окислительно-восстановительных циклов, которые обеспечивают необходимые кофакторы для первичных антиоксидантных ферментных функций.
Малые молекулярные неферментные антиоксиданты (например, GSH, NADPH, тиоредоксин, витамины E и C и следовые металлы, такие как селен) также действуют как прямые поглотители ROS. Эти ферментативные и неферментные антиоксидантные системы необходимы для поддержания жизни путем поддержания деликатного внутриклеточного редокс-баланса и минимизации нежелательного повреждения клеток, вызванного ROS.
Эндогенные и экзогенные антиоксиданты включают в себя некоторые высокомолекулярные соединения (SOD, GPx, Catalse, альбумин, металлотионеин) и некоторые низкомолекулярные вещества (мочевая кислота, аскорбиновая кислота, липоевая кислота, глутатион, убихинол, токоферол / витамин E, флавоноиды).
Комплексная оценка оксидативного стресса состоит из количественного определения содержания в крови следующих параметров: коэнзим Q10, витамин Е, витамин С, бета-каротин, глутатион, малоновый диальдегид, 8-ОН-дезоксигуанозин. Диагностика метаболических особенностей организма позволит врачу-специалисту скорректировать антиоксидативный статус пациента до появления симптомов заболевания, используя показатели общего антиоксидантного статуса и перекисного окисления липидов для назначения антиоксидативной терапии.
Для чего используется исследование?
- Для комплексной диагностики оксидативного стресса и степени интоксикации организма;
- для выявления дефицита антиоксидантов и оценки риска заболеваний, ассоциированных с их недостатком (заболевания сердечно-сосудистой системы, иммунодефициты, доброкачественные и злокачественные опухоли, гормональные нарушения, бесплодие, аутоиммунные заболевания);
- для выявления дефицита микроэлементов и витаминов, связанных с антиоксидантными системами организма;
- для выявления генетических форм дефицита ферментов.
Когда назначается исследование?
- При предраковых заболеваниях;
- при аутоиммунных заболеваниях (ревматоидный артрит, системная красная волчанка, диффузная склеродермия);
- при нейродегенеративных заболеваниях;
- при бесплодии и привычном невынашивании беременности;
- при хронических инфекциях;
- при заболеваниях печени;
- при онкологических заболеваниях;
- при подозрении на врождённый дефицит ферментов;
- при заболеваниях сердечно-сосудистой системы.
Что означают результаты?
Отдельно для каждого показателя, входящего в состав комплекса:
Источник