Клеточный стресс что это

Клеточный стресс что это

Сотрудники «Научно-исследовательского клинического института педиатрии им. цакадемика Ю.Е. Вельтищева», РНИМУ им. Н.И. Пирогова Минздрава России и «Курчатовского института» города Москвы, подготовили обзорную статью на тему молекулярного стресса.

Стрессы возникают в ответ на различные внешние и внутренние воздействия на организм. Из них наиболее часто в литературе обсуждаются окислительный, нитрозативный и карбонильный стрессы, характеризующиеся накоплением в клетках и внеклеточной жидкости свободных радикалов и других активных форм кислорода, а также активных карбонильных соединений. Эти активные (сигнальные) молекулы являются мощными неспецифическими модификаторами структуры и функции белков, липидов, углеводов, вмешиваются в биоэнергетику. Активные сигнальные молекулы в небольших дозах необходимы для адаптивных реакций организма, вызывают торможение нарушений метаболизма, особенно белков, однако при избыточном накоплении приводят к патологическим процессам с выраженной модификацией белков с развитием сердечно-сосудистых, нейродегенеративных, аутоиммунных, соединительнотканных болезней и рака. Обсуждаются возможные меры защиты и профилактики от метаболических стрессов.

По определению Г. Селье, стресс есть неспецифический ответ организма на любое предъявляемое воздействие, вызывающее неспецифическую потребность осуществлять приспособительные функции («бороться или бежать»). При стрессе, наряду с адаптацией к сильным раздражителям, имеются элементы не только активации (напряжения) различных функций, но и повреждения структуры и функций как регуляторных систем, тканей и органов, так и клеток и их молекулярных компонентов. Увеличивается объем коркового вещества надпочечников, уменьшаются вилочковая железа, селезенка и лимфатические узлы, нарушается обмен веществ, а также изменяется состав крови: отмечаются лейкоцитоз, лимфопения, эозинопения, меняется структура и функции гемоглобина, альбумина, повышается содержание продуктов стрессового катаболизма белков (средние молекулы) и т.д.

Стресс на уровне организма быстро (секунды) переходит в «метаболический, молекулярный», при котором образуются высокореакционноспособные сигнальные агенты, в малых дозах вызывающие защитные реакции и становящиеся токсичными в больших дозах. В результате значительного усиления

окислительных процессов (окислительный стресс) в крови накапливаются сигнальные, биологически активные низкомолекулярные соединения, обусловливающие модификацию липидов, углеводов, белков, рецепторов, гормонов, митохондрий, нуклеиновых кислот и даже генома.

Окислительный стресс. Это понятие используется для обозначения ситуации, в которой увеличивается продукция свободных радикалов и других активных форм кислорода с нарушением баланса прооксиданты/антиоксиданты в пользу первых с выраженным увеличением продукции активных форм кислорода и снижением антиоксидантных функций. Активные формы кислорода образуются в результате неблагоприятных (стрессорных) ситуаций: попадание в организм чужеродных ксенобиотиков, действие ультрафиолетовой или ионизирующей радиации, влияние стрессорной активации окислительных ферментов (ксантиноксидаза, НАДН-оксидаза, пероксисомальные оксидазы, цитохром Р450) и др. Образующиеся как продукт аэробного метаболизма в норме в небольших количествах активные формы кислорода необходимы для различных физиологических процессов в клетке. Напротив, их избыточная продукция оказывает вредное действие на здоровье, повреждая структуру и функции клеток, особенно при дефиците антиоксидантов. Степень повреждающего действия зависит от типа оксиданта, объема и интенсивности продукции свободных радикалов, качества и активности антиоксидантов и способности других систем адаптации к стрессу.

Cреди метаболических заболеваний, сочетающихся с окислительным стрессом, наибольшее внимание привлечено к сердечно-сосудистым болезням (атеросклероз, ишемическая болезнь сердца, артериальная гипертония), болезням центральной нервной системы (болезнь Паркинсона, Альцгеймера), почек, дисфункции эндокринных органов, аутоиммунным, хроническим воспалительным болезням, различным опухолям.

Карбонильный стресс. Образование активных форм кислорода и азота происходит в основном

в митохондриях, где эти формы оказывают ингибирующее действие на дыхательные ферменты, нарушая движение электронов по электронно-транспортной цепи митохондрий с дополнительным образованием супероксида и снижением синтеза АТФ. В связи с этим включается более древний способ образования АТФ через гликолиз как в анаэробных, так и аэробных условиях. В результате активации гликолиза и пероксидации мембранных липидов повышается синтез еще ряда активных модификаторов белков – активных карбонильных соединений, обусловливающих развитие карбонильного стресса: производных глюкозы (глиоксаль, метилглиоксаль, 4-гидроксиноненаль, активные карбонильные формы глюкозы, почти не встречающиеся в норме и содержание которых значительно повышается при гиперглюкозурии) и производных полиненасыщенных жирных кислот (альдегиды, кетоны, кетоальдегиды, кетокислоты, формальдегид, малоновый диальдегид). Активные карбонильные соединения способны карбонилировать (гликировать) белковые молекулы.

Карбонильный, окислительный и нитрозативный стрессы в биологических системах неразделимы и образуют «порочный круг», вместе составляют элементы сложной сети реакций. Эти молекулярные стрессы с образованием сигнальных молекул необходимы для быстрых неспецифических реакций организма («бороться или бежать»), индуцируя неспецифические посттрансляционные модификации, обусловливающие механизм быстрого приобретения новых свойств. Активные стрессорные сигнальные молекулы осуществляют неферментативную модификацию белков, липидов, нуклеиновых кислот, в том числе неферментативное гликирование. Защитное действие активных сигнальных молекул проявляется напрямую и опосредованно. Прямая защита заключается в стабилизации (выключении функции) белков клетки. Опосредованная защита включает участие сигнальных молекул в следующих процессах: 1) регуляция сигнальных путей клетки, в том числе ответственных за реакцию на стресс; 2) перепрограммирование эпигенома (через гистоны, ДНК метилазы); 3) появление дополнительных реакций метаболизма; 4) запуск механизма мутагенеза, индуцированного стрессом. Защитой от карбонильного стресса служат активация глиоксилазы I и II, кеторедуктазы, утилизация активных форм кислорода в организме, восстановленный глутатион, а также использование фармпоглотителей метилглиоксаля (метформин, карнозин).

Модифицированные белки. Целый ряд изменений, возникающих при стрессе, имеет биохимическую целесообразность, т.е их до определенной степени выраженности можно считать адаптационными. Для каждого вида метаболического стресса имеются дозозависимые границы физиологического и патологического воздействия. Благодаря гормональной стимуляции (гормезису), малые дозы активных молекул, как и мягкие экологические стрессоры, не только не причиняют вред организму, но даже способствуют формированию устойчивого феномена, приспособлению к широкому разнообразию изменений внешней и внутренней среды.

В результате воздействия активных молекул в организме накапливаются модифицированные альбумин, гемоглобин, липопротеины низкой плотности (ЛПНП), коллаген. Модифицированные белки со слегка измененной структурой при адекватном воздействии сигнальных молекул обратимо приобретают новые каталитические и агрегационные свойства, а также повышенную устойчивость к протеолизу, изменение коллоидных реакций, усиление агрегации и уменьшение степени дисперсности. В то же время при метаболических стрессах активные сигнальные молекулы, образующиеся уже на начальных стадиях, могут быть факторами стабилизации белковых молекул. Модификация белков и нуклеотидов может благоприятствовать развитию защитных реакций на уровне организма, а именно – провоцировать воспалительную реакцию, запустить программированную гибель поврежденных клеток (некроз, апоптоз, аутофагия), а также при повторных повреждениях индуцировать перестройки в эпигеноме.

Читайте также:  Эмоциональное выгорание тест водопьяновой

Гликированный гемоглобин. Участие гликированного гемоглобина в развитии последствий карбонильного стресса заключается, в частности, в повреждении эритроцитов. Структурные перестройки гемоглобина происходят в результате окисления аминокислотных остатков (цистина, гистидина, тирозина, триптофана), нитрозилирования аминокислотных остатков (цистина, тирозина, триптофана, метионина), хлорирования остатков лизина, метионина, глицина, аргинина, образования стабильных соединений аминокислот с активными карбонильными соединениями. Благодаря тому, что гемоглобин относится к долгоживущим белкам (120±20 дней), аккумулирующим различные посттрансляционные модификации, его измененные формы используют в диагностике различных метаболических нарушений, например уровень гликированного гемоглобина (НbА) – более устойчивый показатель гипергликемии, который служит «золотым стандартом» при диагностике сахарного диабета. Структурные изменения гемоглобина сопровождаются его дестабилизацией, утратой ряда свойств. Гликированный гемоглобин имеет более высокое сродство к кислороду, в результате чего затрудняется отдача кислорода в тканях (тканевая гипоксия) с усилением анаэробного гликолиза.

«Неэффективный» альбумин. Влияние стрессовых ситуаций на белки демонстрируют также структурно-функциональные изменения альбумина при патологии. Альбумин – глобулярный полифункциональный транспортный белок, главным образом переносящий в клетки субстрат для образования АТФ в митохондриях – неэстерифицированные жирные кислоты (С16:0, С18:0, а также в небольших количествах С18:1 и С18:2), для которых в молекуле альбумина имеются специфические и неспецифические центры связывания; в результате заполнения этих центров обеспечивается стабильность молекулы. Нарушение таких связей приводит к катаболизму альбумина. Альбумин переносит 90% жирных кислот крови, в то время как липопротеины – только остальное количество. Кроме того, альбумин обратимо связывает и транспортирует такие низкомолекулярные эндогенные и экзогенные молекулы (лиганды), как билирубин, глюкоза, лекарственные препараты, гормоны, ионы металлов (Fe, Zn, Cu, Ni, Ca) и др., до 10 лигандов на 1 молекулу. Нарушение дисульфидных связей, в норме сохраняющих глобулярную структуру альбумина, приводит к разрыву этих связей активными сигнальными молекулами при стрессе и, как следствие, потере глобулярной структуры. Снижается количество специфических мест связывания («эффективной концентрации альбумина»), повышается индекс токсичности, зависящий от соотношения общего и «эффективного» количества альбумина, нарушается доставка необходимых субстанций к тканям. Снижение транспортных функций альбумина выявлено при атеросклерозе, ожогах, перитоните, сепсисе, гепатитах, инфаркте миокарда, лейкозе, бронхиальной астме, психических заболеваниях, уремии.

Белки и микроэлементы. При конформационной перестройке основной мишенью активных сигнальных молекул (и других эндогенных метаболитов) в белках служат SН-группы – регуляторные центры, молекулярные переключатели активности белков. SH-группы имеют повышенную способность связываться с микроэлементами, вызывая изменение свойств белков. Активные молекулы, таким образом, являются модуляторами чувствительности и резистентности клетки, могут оказывать как стимулирующее, так и угнетающее действие на метаболизм, одновременно повышая устойчивость к протеолизу, изменяя коллоидные реакции, агрегацию белков и уменьшая степень их дисперсности. Часть белков с измененной структурой объединяется в кластеры, увеличивая вязкость внутриклеточной среды. Однако часть «расплавленных белковых глобул» подвергается стабилизации и возвращается к первоначальному объему в связи с активным захватом микроэлементов, обеспечивающим плотную упаковку, возвращающим компакт- ность, но не функциональную активность, обусловливая появление чужеродных (антигенных) свойств молекуле белка.

Заключение

Неспецифический ответ организма на любое предъявленное ему требование обычно сопровождается увеличением в крови содержания стрессорных гормонов – кортизола, адреналина, мобилизующих обменные процессы. При этом организм, несмотря на изменение своего состояния, приобретает способность сохранять относительную стабильность внутренней среды. Однако при сильных раздражителях, наряду с элементами адаптации, возникают элементы напряжения и даже повреждения. Ответ на разные стимулы может развиваться как на уровне целого организма, так и в различных его системах. Молекулярные механизмы на клеточном уровне затрагивают изменения мембранных липидов, углеводов и формирование адаптивного ответа через модификацию белков, их функций и сеть ферментативных и неферментативных процессов. Под действием активированных гормонами окислительных ферментов (ксантиноксидаза, моноаминооксидаза и др.) происходит накопление в организме супероксидного аниона и его производных – активных форм кислорода с развитием окислительного стресса. Активные формы кислорода – мощный модификатор структуры и функции белков, липидов, углеводов. Кроме того, супероксид, взаимодействуя с оксидом азота, образует активные формы азота – нитриты, нитраты, пероксинитриты, обусловливая развитие нитрозативного стресса. При взаимодействии с углеводами и липидами развивается карбонильный стресс с образованием активных карбонильных соединений, также играющих роль модификаторов белковых молекул. Такая модификация обусловлена свойством активных молекул спонтанно вступать в реакции с аминокислотными остатками белков. Реакционноспособные (сигнальные) молекулы оказывают дозозависимые влияния на метаболизм – от регуляторных до нарушающих структуру биологических систем. Активные молекулы сигнализируют клетке о наличии стрессовой ситуации, участвуют в организации защитной реакции или приводят к развитию хронических обменных заболеваний, для каждого из которых отмечается преимущественное повреждение «своих» белков. Неослабевающий интерес исследователей к проблеме метаболических стрессов объясняется не только новыми открытиями в проблеме, но и поиском эффективных средств защиты от патологического действия метаболических стрессов.

Юрьева Э.А., Новикова Н.Н., Длин В.В., Воздвиженская Е.С.

Российский вестник перинатологии и педиатрии, 2020; 65:(5)

Источник

Окислительный стресс

Опубликовано пн, 29/07/2019 — 16:04

Биохимическая целостность мозга жизненно важна для нормального функционирования центральной нервной системы (ЦНС). Одним из факторов, способствующих церебральной биохимической недостаточности, является химический процесс, называемый окислительным стрессом.

Читайте также:  Радость печаль гнев счастье

Окислительный стресс возникает при чрезмерной продукции свободных радикалов в результате недостаточности противодействующей системы антиоксидантного ответа. Мозг с его высоким потреблением кислорода и высоким содержанием липидов очень чувствителен к окислительному стрессу. Следовательно, вызванное окислительным стрессом повреждение головного мозга обладает выраженным потенциалом для негативного воздействия на нормальные функции ЦНС.

Этиологические факторы окислительного стресса

Возможно, психологический стресс нарушает окислительно-антиоксидантный баланс в мозге, вызывая нарушение функции антиоксидантных ферментов. Это приводит к истощению глутатиона и увеличивает окислительный стресс. Одновременно возникающая токсичность глутамата, дисбаланс кальция и митохондриальное нарушение совместно усиливают окислительный стресс, вызывая биохимические расстройства в мозге. Это нарушает нейроциркуляцию и ослабляет гиппокампальные, миндалевидные и корковые связи, в конечном итоге вызывая поведенческие и когнитивные нарушения

Патогенез окислительного стресса

Окислительное фосфорилирование, происходящее в митохондриях, является основным источником АТФ. В качестве побочного продукта этот процесс приводит к образованию свободных радикалов или активных форм кислорода (ROS), активных форм азота (RNS) и радикалов, содержащих углерод и серу. В умеренных или низких количествах ROS считаются необходимыми для развития и функционирования нейронов, тогда как слишком высокие уровни опасны. Генерируемая ROS закись азота и оксид углерода способствуют важным физиологическим функциям, таким как длительное потенцирование (LTP) посредством глутамат-зависимых механизмов. В нормальных условиях антиоксидантная система нейтрализует вредные эффекты продукции ROS во время аэробного метаболизма, и таким образом мозг эффективно регулирует потребление кислорода и способность к выработке окислительно-восстановительного потенциала. Когда продукция ROS превышает поглощающую способность системы антиоксидантного ответа, происходит интенсивное окисление белка и перекисное окисление липидов, вызывающее окислительное повреждение, клеточную дегенерацию и даже функциональное снижение активности мозга. Например, высокие концентрации ROS, как сообщается в литературе, уменьшают LTP и синаптическую передачу сигналов и механизмы пластичности мозга.

Окислительный стресс часто описывается как «саморазрушающий» феномен на основании наблюдений, поскольку чрезмерное высвобождение активных форм кислорода , вызванное окислительным стрессом, вызывает повреждение клеток, а сами поврежденные макромолекулы могут вести себя как и / или стать ROS. Следовательно, мозг с его богатым содержанием липидов, высокой потребностью в энергии и слабой антиоксидантной способностью становится легкой мишенью чрезмерного окислительного воздействия. Фосфолипиды в мозге являются особенно уязвимыми объектами для ROS-опосредованного перекисного окисления, но белки и ДНК также являются мишенью для ROS, что становится особенно проблематичным при старении, так как сообщается, что в «старом мозге» обнаруживаются высокие уровни мутаций, вызванных окислительным стрессом, в митохондриальном ДНК. Следовательно, накопление ROS представляет собой угрозу нейронов , которая, если она превышает или минует противодействующие механизмы, может вызвать значительное повреждение нейронов.

Влияние оксидативного стресса на структуры мозга

Биохимически очевидно, что разные нейроны имеют разные уровни уязвимости к окислительному стрессу. Например, клетки гиппокампа, миндалины и мозжечка в некоторых исследованиях были признаны наиболее восприимчивыми к окислительному стрессу и, следовательно, они, как предполагается, первыми подвергаются структурно — функциональному повреждению.

В нескольких исследованиях было высказано предположение, что пирамидные клетки CA3 и гранулярные клетки зубчатой ​​извилины (DG) являются областями, подверженными окислительному стрессу, тогда как , другие авторы сообщали , что пирамидные клетки CA1 более восприимчивы к окислительному повреждению. Независимо от этого, специфическое для региона повышение уровня окислительного стресса в зонах CA1 и CA3 Cornu Ammis является важным и может иметь значительные функциональные последствия для мозга. Это особенно важно, поскольку гиппокамп играет преимущественную роль в обучении и функции памяти, а вентральный гиппокамп участвует в генезе тревоге и депрессии.

Хорошо известно, что система DG-CA3 гиппокампа регулирует структурную пластичность, регенеративную / ремоделирующую способность, а также факторы нейрогенеза, такие как нейротрофический фактор мозга. Также было высказано предположение, что пирамидальные клетки CA1 и CA3 и гранулярные клетки DG очень чувствительны к окислительному повреждению. Таким образом, окислительное повреждение функции DG-CA может уменьшить пролиферацию клеток, нарушить способность ремоделирования, изменить структурную пластичность и нарушить нейрогенез, коллективно нарушая нормальную синаптическую нейротрансмиссию.

Миндалина и префронтальная кора

Миндалина и префронтальная кора могут в процессе оксидативного стресса подвергаться определенным изменениям, касающимся , в частности, дендритов, о чем свидетельствуют ситуации экспериментального хронического стресса. Также сообщалось о дендритном сокращении медиального региона префронтальной коры и росте дендритов в миндалевидных нейронах в ответ на стресс. Известно, что стрессовые стимулы изменяют префронтальную дендритную архитектуру и нейронную связность внутри PFC. Интересно отметить, что более высокая уязвимость гиппокампа и миндалины к окислительному стрессу и разрушению системы антиоксидантной защиты очевидна. Поэтому представляется весьма вероятным, что окислительный стресс в мозге нарушает биохимическую целостность гиппокампа и миндалины. Понятны и вызванные окислительным стрессом нейроэндокринные изменения в миндалине, включая гиперактивность миндалины и сокращение дендритов, что может дополнительно усиливать синаптические нарушения, нарушая проекции гиппокампа и миндалины.

Кроме того, свободные радикалы , как известно, окисляют внеклеточные участки глутаматэргических N — метил — д -аспартата рецепторов, что приводит к ослаблению LTP и синаптической нейротрансмиссии

Антиоксиданты

В мозге действуют два вида защитных механизмов для борьбы с угрозой, создаваемой ROS: антиоксидантная ферментная система и низкомолекулярные антиоксиданты.

Антиоксидантная ферментная система включает супероксиддисмутазу (SOD), глиоксалазу, глутатионредуктазу, глутатионпероксидазу и каталазу (CAT). Ферменты SOD, в том числе Cu-Zn SOD и Mn-SOD, способствуют спонтанной дисмутации супероксидных радикалов с образованием H 2 O 2 , который затем удаляется ферментами CAT и глутатионпероксидазы.

Низкомолекулярные антиоксиданты включают глутатион, мочевую кислоту, аскорбиновую кислоту и мелатонин, которые обеспечивают нейтрализующие функции, вызывая хелатирование переходных металлов. Глутатион, который встречается в восстановленном (GSH), а также в окисленном виде (глутатион дисульфид), является наиболее важным неферментативным эндогенным антиоксидантом и может регенерироваться глутатионредуктазой с потреблением NADPH . Таким образом поддерживаются оптимальные уровни сниженного GSH. Эндогенное отношение GSH к глутатиондисульфиду считается показателем окислительно-восстановительного гомеостаза в клетке. Более высокие уровни GSH также служат кофактором для других ферментов, включая глиоксалазу и пероксидазу.

Читайте также:  Глаз это орган чувств или зрения

В ответ на окислительный и нитрозативный стресс клетки повышают свою антиоксидантную защиту посредством активации фактора, связанного с эритроидным фактором 2 (Nrf2) — важного фактора транскрипции. Nrf2 является ключевым компонентом этой системы контроля и распознает антиоксидантный элемент ответа (ARE), обнаруженный в промоторных областях многих генов, которые кодируют антиоксиданты и ферменты детоксикации, такие как гем-оксигеназы 1 (HO-1), NAD (P) H-дегидрогеназы хинона 1, SOD1, глутатионпероксидаза 1 (GPx1) и CAT. Таким образом, активация пути Nrf2 происходит для борьбы с накоплением видов ROS и RNS. Благодаря своим защитным свойствам Nrf2 был предложен в качестве фармакологической мишени при патологиях с нейровоспалительными и окислительными свойствами, включая нейродегенеративные и психоневрологические заболевания. При активации Nrf2 увеличивает экспрессию нескольких эндогенных антиоксидантов. А при стойком воспалении и повышенных уровнях ROS, как это наблюдается в течение нескольких эпизодов — обострений психического расстройства , механизмы антиоксидантной защиты тканей «насыщаются» до такой степени, что становятся неэффективными. Цитозольные ферменты, такие как глиоксалаза I путем детоксикации метилглиоксаля, обеспечивают защиту от окислительного повреждения. Метилглиоксаль генерирует высокоокислительные конечные продукты гликирования и может дополнительно вызывать окислительный стресс и вызывать гибель клеток.

Сегодня ясно, что активные формы кислорода играют важнейшую патогенетическую роль и что накопление активных форм кислорода повышает восприимчивость мозговой ткани к повреждению. Механизмы, с помощью которых активные формы кислорода вызывают повреждение ткани головного мозга, не совсем понятны, но сообщалось, что ROS запускают множество молекулярных каскадов, которые повышают проницаемость гематоэнцефалического барьера и изменяют морфологию мозга, вызывая, таким образом, нейровоспаление и гибель нейронов. Вовлечение гипоталамо-гипофизарно-надпочечниковой оси, сигнализации опосредованного рецептора глюкокортикоидов, токсичность глутамата, и нарушения N — метил — д -аспартата рецепторных систем сигнализации рассматривались , в качестве предполагаемых звеньев патогенеза этого процесса.

Таким образом, имеются свидетельства увеличения окислительного повреждения головного мозга при развитии патологий центральной нервной системы для нейродегенеративных заболеваний, включая болезнь Альцгеймера, болезнь Паркинсона и боковой амиотрофический склероз, цереброваскулярные расстройства, демиелинизирующие заболевания и психические расстройства. Несмотря на то, что окислительный стресс в основном связан с нейродегенеративными расстройствами, такими как болезнь Альцгеймера, болезнь Хантингтона и болезнь Паркинсона, его участие в нервно-психических расстройствах,включая тревожные расстройства и депрессию также не вызывает сомнений.

Нейродегенеративные расстройства

Болезнь Альцгеймера, болезнь Паркинсона и болезнь Хантингтона — это часто встречающиеся нейродегенеративные расстройства, патологические процессы при которых включают нейротоксическую агрегацию специфических белков в мозге. Накопление аномально свернутых тау- и амилоидных β- белков происходит при болезни Альцгеймера, а α-синуклеин и мутантный белок Хантингтона (mHtt) накапливаются при болезни Паркинсона и болезни Хантингтона, соответственно. Причинно-следственная связь между окислительным стрессом и этими белковыми агрегатами была доказана. В некоторых исследованиях сообщалось о возрастном повышении уровня активных форм кислорода , вызванного окислительным стрессом, как фактором, вносящеим свой вклад в формирование «нейронного налета» при болезни Альцгеймера, α- синуклеина и mHtt, а в других исследованиях указывалось на роль образования амилоидного β- белка при появлении ROS . Точно так же в отношении патологии при болезни Паркинсона (PD) , сообщалось , что окислительный стресс способствует альфа-synuclein агрегация в дофаминергических нейронах, и что α -synuclein дополнительно генерируют внутриклеточный ROS. В то время как накопление mHtt приводило к снижению количества антиоксидантного белка пероксиредоксина Prx1, сверхэкспрессия Prx1 дикого типа значительно снижала вызванную mHtt токсичность.

Психические расстройства

Участие механизмов окислительного стресса было также предполагается при некоторых психических заболеваниях, включая депрессию, тревожные расстройства, шизофрению и расстройства аутистического спектра. Предполагается, что низкий GSH-Px является фактором, способствующим структурным аномалиям мозга.

Депрессия

Повышенные уровни ROS и RNS и измененные уровни антиоксидантного глутатиона (GSH) были зарегистрированы в посмертных образцах головного мозга больных депрессией. . Фактически, механизмы окислительного стресса были предложены в качестве мишеней для новых антидепрессантов. Это представляется оправданным, учитывая случаи воспаления, окислительного и нитрозативного стресса, а также снижение уровней концентрации в плазме и активности некоторых ключевых антиоксидантов в образцах сыворотке больных депрессией. Также известна связь между депрессией и полиморфизмом в генах SOD и CAT. ).

Шизофрения

Механизмы окислительного стресса также связаны с шизофренией и биполярным расстройством. Повышенные уровни активности SOD в плазме были зарегистрированы у пациентов с «хронической шизофренией», которым вводили антипсихотические препараты, и активность SOD отрицательно коррелировала с позитивными симптомами шизофрении. Уровни других антиоксидантов, включая глутатионпероксидазу (GSH-Px), также были вовлечены в патологический процесс при этом заболевании.

Биполярное аффективное расстройство

В нескольких исследованиях сообщалось, что у пациентов с биполярным расстройством наблюдаются значительные изменения в антиоксидантных ферментах, перекисном окислении липидов и уровнях оксида азота , что свидетельствует о роли свободных радикалов и антиоксидантов в патогенезе биполярного аффективного расстройства.

Терапия окислительного стресса

Возможно, жесткая регуляция окислительного стресса, либо путем усиления активности ферментов антиоксидантной защиты, либо путем непосредственного подавления прооксидантов, потенциально способна купировать острое или даже хроническое нейропсихиатрическое расстройство.

Окислительные стресс и антидепрессанты

Одна из гипотез предполагает, что антидепрессанты оказывают свое терапевтическое действие, подавляя провоспалительные цитокины и продукцию ROS / RNS или усиливая антиоксидантную защиту. Имеются убедительные данные, подтверждающие, что депрессия сопровождается окислительным стрессом и что, возможно, усиление антиоксидантной защиты является одним из механизмов, лежащих в основе нейропротекторного действия антидепрессантов.

Источник

Оцените статью