Как растения чувствуют гравитацию

Когда растения почувствовали гравитацию

Растения научились чувствовать силу тяжести сразу, как вышли на сушу, однако довольно долго это чувство оставалось у них несовершенным.

Нынешние наземные растения когда-то произошли от водорослеподобных предков, живших в древних морях и океанах – произошло это около 500 млн лет назад. Естественно, растениям пришлось сильно меняться: жить в воде – совсем не то же самое, что жить на суше. Воду и некоторые важные питательные вещества на суше приходится добывать из земли, так что растениям пришлось побыстрее обзавестись корнями, которые не только качали воду из земли, но и удерживали растение на месте.

Нам кажется естественным, что корни растут вниз – куда же им ещё расти? – но для того, чтобы они росли в правильном направлении, корни должны чувствовать силу тяжести. А заставить их чувствовать силу тяжести задача уже не совсем простая, и наземные растения не сразу решили её на «отлично».

Исследователи из Австрийского научно-технологического института и Педагогического университета Шэньси сравнили, как чувствуют силу тяжести мхи, плауны, папоротники, голосеменные и цветковые растения: их корневые системы заставляли расти горизонтально, наблюдая, когда корешки начнут загибаться книзу. Оказалось, что хуже всего из «положения лёжа» вниз растут корни у мхов, плаунов и папоротников – то есть у трёх самых древних групп наземных растений (среди которых мхи древнее и плаунов, и папоротников). Напротив, у эволюционно более молодых голосеменных (к которым относятся, например, хвойные), и цветковых (к которым относятся и пшеница в поле, и фикус на окне, и тополь на улице, и т. д.) корни довольно быстро поворачивали к низу. Иными словами, гравитропизм уверенно заработал только у голосеменных и цветковых.

Но что при этом произошло в их растительных клетках? Чтобы корни росли вниз, нужно, во-первых, чувствовать гравитационное поле, во-вторых, так организовать деление клеток, чтобы корень рос в нужном направлении – то есть нужно правильно передать сигналы, сообщающие о силе тяжести.

Для чувства гравитации у растений в клетках есть особые крахмальные гранулы амилопласты, которые оседают под действием силы тяжести. В статье в Nature Communications говорится, что если рассмотреть кончик корня у разных групп растений, то мы увидим, что только у голосеменных и цветковых амилопласты оседают прямо вниз и собраны действительно только в клетках самого кончика. А вот у мхов, плаунов и папоротников эти гранулы распределены по клеткам корня более равномерно, и потому, очевидно, не позволяют отчётливо чувствовать гравитационную силу.

С другой стороны, у голосеменных и цветковых удачно настроена передача гравитационного сигнала с помощью гормона ауксина, который управляет ростом растительных тканей. Поток ауксина через ткани делает клетки полярными – у них появляется верх и низ. Гормон переходит от клетки к клетке с помощью белков-переносчиков, и только у голосеменных и цветковых белки-переносчики в корнях расположены в клетке так, чтобы передавать сигнал по вертикали. Рост корня регулирует не только ауксин, но, так или иначе, другие молекулярные сигналы, связанные с ауксином, тоже начинают циркулировать по клеткам корня так, что корень растёт именно вниз.

Ещё раз повторим, что в целом гравитропизм у наземных растений возник быстро, иначе они не смогли бы укорениться на земле – в прямом и переносном смысле. Но на то, чтобы отточить чувство силы тяжести, понадобились миллионы лет эволюции. С другой стороны, сама по себе идея чувствовать гравитационное притяжение с помощью чего-то тяжелого в клетках возникала в природе не раз: например, один из плесневых грибков ощущает силу тяжести с помощью белкового «гравитационного кристалла», причем ген для этого белка грибок позаимствовал у бактерии.

Источник

Как отсутствие гравитации влияет на растения

Семена огурцов, начавшие рост на околоземной орбите, указали на роль белка CsPIN1, который «чувствует» гравитацию и направляет действие гормонов роста.

Уже довольно давно известно, что растения способны «чувствовать» направление действия сил притяжения и соответствующим образом распределять градиент ауксинов – растительных гормонов роста и развития. Но чтобы лучше понять, как эти процессы реализуются на клеточном уровне, японские ученые исследовали рост семян огурца на борту МКС, в условиях микрогравитации.

Хидеюки Такахаси (Hideyuki Takahashi) и его коллеги выбрали огурцы, поскольку они, как представители семейства тыквенных (Cucurbitaceae), на ранних стадиях развития формируют особые «крючки», расположенные между растущим корнем и стеблем. Они позволяют растению закрепляться в почве и облегчают пробивание ростка через плотную семенную оболочку, а направление их роста определяется именно гравитацией. Если семя размещается верно (вертикально, нужной стороной вверх), то «крючки» растут горизонтально у поверхности грунта. Если семя лежит горизонтально, рост «крючка» с верхней стороны подавляется гравитацией. Ну а на МКС он растет в любом случае.

Читайте также:  Доброго утра суперского настроения

В новой работе Такахаси и его соавторы использовали такие растения, доставленные с МКС, изучив поведение белка CsPIN1, активность которого регулируется гравитацией, и впервые показав, что именно он может служить «передаточным звеном» между гравитацией и гормональной реакцией растения, которая проявляется и в направлении роста «крючков». Об этом ученые пишут в статье, опубликованной журналом Nature Microgravity.

Поместив семена огурцов в специально разработанные контейнеры, ученые снова отправили их на орбиту. Одна группа растений развивалась здесь в обычных условиях микрогравитации, а вторая – при не слишком быстром центрифугировании, которое имитировало слабую (1g) гравитацию. Эксперимент продолжался всего два часа, после чего начавшие рост семена космонавты фиксировали в сложном растворе на основе спирта и возвращали на Землю.

Здесь Такахаси с коллегами сравнили состояние тех и других растений, прокрасив их ткани на наличие CsPIN1 и выяснив расположение этого белка в клетках. Оказалось, что под действием гравитации CsPIN1 перемещается в переходную зону между корешком и гипокотилем (промежуточной областью между корнем и стеблем). По словам ученых, это заставляет клетки формировать транспортный канал, по которому гормоны роста могут перемещаться из одной части растения в другое и управлять его развитием в соответствии с гравитацией.

Источник

Ученые выяснили, когда растения начали «чувствовать» гравитацию

Первая флора Земли отрастила корни и начала ощущать притяжение планеты примерно 500 миллионов лет назад, в конце кембрия, однако по-настоящему эта способность развилась у них лишь в начале каменноугольного периода. К такому выводу пришли ботаники, опубликовавшие статью в журнале Nature Communications.

«Природа намного умнее нас и она может научить нас многому. Теперь мы начали понимать, что именно нужно растениям для того, чтобы закрепиться в почве и достичь нутриентов и воды в ее глубинных слоях. Это может помочь нам выяснить, как создать сорта злаков, способных расти в очень засушливой местности», — рассказывает Ю-чжу Чжан (Yuzhou Zhang) из Института науки и технологий Австрии в Клостернойбурге.

Как сегодня считают ученые, первые деревья появились в середине девонского периода, примерно 400 миллионов лет назад. Их появление резко изменило облик всей планеты – сухопутные растения сделали ее «зеленой», а также породили множество новых видов животных, в том числе сухопутных насекомых, и грибков, питающихся исключительно растительной биомассой.

То, как выглядели эти первые деревья, пока остается загадкой для палеонтологов – известно лишь небольшое число «окаменелых лесов», особого типа отложений этого времени, в которых сохранились полноценные стволы и корневые системы этих деревьев, оказавшиеся под землей благодаря извержениям пепла или лавы.

Их изучение показывает, что флора того времени были очень причудливыми объектами – роль листьев у них исполняла особая фотосинтезирующая кора, а по внешнему виду они были похожи на карликовые деревья из современной тундры.

Относительно недавно ученые начали сомневаться в этой идее. К примеру, три года назад геологи нашли свидетельства того, что первые грибы появились на суше уже 440-460 миллионов лет назад, и они вряд ли могли бы существовать на суше сами по себе, без помощи растений или других источников органики, которой они должны были питаться.

Год назад генетики и палеонтологи показали, что растения и мхи должны были выйти на сушу гораздо раньше, в конце кембрийского или ордовикского периода, объединив данные раскопок и результаты сравнения геномов мхов, папоротников и прочих «древних» растений.

Подобные открытия, как отмечает Чжан, заставляют ученых задуматься о том, как возникли первые сухопутные растения и как именно они приобрели важнейшую черту всех современных представителей флоры – способность «ощущать» притяжение планеты и отращивать корни.

Ответ на этот вопрос получить очень не просто, так как в прошлом ученые детально изучали устройство «датчиков гравитации» только у цветковых растений, а не их примитивных родичей и предшественников. Более того, многие биологи подозревают, что растения могут иметь не один, а несколько подобных регуляторов роста корней, большая часть которых остается неизвестной для нас.

Австрийские исследователи и их коллеги из Китая заполнили этот пробел и раскрыли историю эволюции этой ключевой особенности растений, сравнив то, как ощущают гравитацию мхи, папоротники, плауны, водоросли, а также цветковые и голосеменные растения.

Читайте также:  Пропало чувство вкуса запаха

Для этого ученые прорастили семена и споры всех этих представителей флоры, дождались появления у них корня, повернули их на 90 градусов и начали смотреть за тем, в какую сторону он будет расти. Параллельно ученые изучали то, как были устроены клетки их корней и как они реагировали на внезапную перемену вектора гравитации.

Как оказалось, все сухопутные растения, кроме мхов, умели ощущать гравитацию, однако скорость их реакции на подобные сдвиги сильно различалась. Корни цветковых и голосеменных растений начинали поворачивать вниз уже через 4-6 часов после начала эксперимента, тогда как папоротники и мхи меняли вектор роста лишь через несколько дней.

Причина этого скрывалась в различиях в устройстве клеток корней всех этих растений. Во всех них присутствовали особые структуры, так называемые амилопласты. Они представляют собой скопления крахмала, чья плотность несколько выше, чем у окружающей их цитоплазмы клеток.

Благодаря этому, при наличии гравитации они будут «тонуть» и падать вниз, что помогает флоре чувствовать притяжение Земли и корректировать направление роста корней, используя особые гормоны-ауксины.

Чжан и его коллеги обнаружили, что амилопласты были распределены по корням разных растений неодинаковым образом. Они присутствовали только в клетках на кончике корня цветочных и голосеменных представителей флоры, тогда как у папоротников и плаунов эти органеллы были случайным образом разбросаны по всему организму.

Аналогичные расхождения были характерны для того, какие клетки производили ауксины и как они распространялись по корням.

Соответственно, наличие амилопластов почти у всех представителей сухопутной флоры говорит о том, что они научились «чувствовать» гравитацию и отращивать корни практически сразу после выхода на сушу. Это произошло, как предполагают авторы статьи, около 500 миллионов лет назад.

С другой стороны, различия в поведении и распределении этих органелл говорят о том, что полноценная корневая система и способность ощущать вектор притяжения появились у представителей флоры значительно позже, примерно 370 миллионов лет назад. В этот момент появились предки цветочных и голосеменных растений, следы чьего успеха можно увидеть в любом угольном месторождении.

Что именно заставило их приобрести подобную способность, пока не понятно. Как надеются ученые, дальнейшие раскопки и изучение геномов современных растений позволит им найти ответ на этот вопрос.

Источник

Молекулярные моторы помогают растениям чувствовать гравитацию

Ученые объяснили необычное поведение гранул в клетках растений, которые позволяют им чувствовать наклон и гравитацию. Эксперименты с микроскопическими бусинами и проростками пшеницы показали, что эти гранулы перемешивают молекулярные моторы. Статья о работе вышла в журнале PNAS.

У многих животных (и у людей в том числе) чувство равновесия обеспечивает внутреннее ухо, в котором есть маленькое неорганическое включение – отолит (его название происходит от греческих корней, означающих «ухо» и «камень»). Когда мы наклоняемся, перемещение отолита под воздействием гравитации раздражает чувствительные волоски, и мы ощущаем, что положение нашего тела изменилось. Это необходимо для того, чтобы человек нормально двигался.

Хотя растения практически не двигаются, им необходимо чувствовать гравитацию, чтобы определять «верх» и «низ» и выбирать направление роста. Для этого у них есть похожая по принципу устройства система, только роль «камушка» играют статолиты (название этого органа происходит от греческих корней, означающих «неподвижный» и «камень») – плотные гранулы вещества в специальных клетках. Статолиты оседают под воздействием гравитации, и благодаря им органы растения могут определить, в какую сторону им нужно расти.

Однако ученые долго не могли понять, что позволяет растениям чувствовать изменения гравитации и наклон так точно. Кучка зерен или гранул – плохой инструмент для измерения наклона, так как взаимодействие между частичками и трение будет мешать им пересыпаться, и после некоторого порогового значения наклона система должна стать неэффективной.

Французские биологи смогли разрешить эту загадку. Сначала они проследили за движением каждой частички-статолита в ответ на наклон и увидели, что гранулы ведут себя совсем не как зернистая система. Они перетекают с места на место независимо от угла наклона, словно жидкость, и не имеют никакого порогового значения.

Источник

Как растения растут в состоянии невесомости?

Гравитация неотъемлема для всех организмов на Земле. Она влияет на каждый аспект нашей физиологии, поведения и развития — независимо от того, что вы такое, вы развиваетесь в среде, которая тесно уходит гравитационными корнями в землю. Но что произойдет, если вы откажетесь от привычной среды и окажетесь в ситуации за пределами эволюционного опыта? Биологи, выращивающие растения в лаборатории, частенько задаются таким вопросом. Эксперименты начинаются на земле, но постепенно переходят в космос. Что может быть новее для растения, чем условия микрогравитации в космосе?

Читайте также:  Женщины одну минуту героиня подсознательно чувствует муж

Изучая, как растения реагируют на жизнь в космосе, мы можем узнать больше о том, как они приспосабливаются к изменениям окружающей среды. Растения не только имеют важное значение для земной жизни; они также могут быть важными для нашего освоения Вселенной. Пока мы готовимся к будущей колонизации, нам важно понять, как наши растения могут приспособиться к жизни на других планетах, ведь именно они могут стать неизменным источником еды, воды и воздуха для будущих колонистов.

Таким образом, даже пока мы находимся на земле, на борту той же Международной космической станции исследования идут полным ходом. Они уже преподнесли нам несколько сюрпризов на тему роста в условиях микрогравитации и изменили наше мышление о росте растений на Земле.

Учиться безмятежности растений

Однако растения могут изменить «внутреннюю среду», и растения — мастера по манипуляциям со своим метаболизмом, который помогает им справиться с пертурбациями окружения. По этой причине мы и используем растения в своих исследованиях; мы можем рассчитывать на них как на чувствительных репортеров экологических изменений, даже в относительно новых условиях вроде космического полета.

Людям было интересно, как растения реагируют на космический полет, ровно с того момента, как у нас появилась возможность туда отправиться.

Пока на Земле изучают растения, сами растения находятся в космосе

Космический полет требует специальных камер для роста, специальных инструментов для наблюдения и сбора образцов и, конечно, специальных людей, которые позаботятся о проведении эксперимента на орбите.

После стыковки астронавт загружает чашки в оборудование для выращивания растений. Свет стимулирует семена раскрыться, камеры постоянно записывают процесс всхода ростков, и в конце эксперимента астронавт собирает 12-дневные растения и сохраняет их в консервационных тубах.

По возвращении на Землю мы можем сколько угодно экспериментировать с сохраненными образцами, изучать их уникальные процессы метаболизма, которые протекали на орбите.

Собирая плоды

В 1880 году Чарльз Дарвин показал, что когда вы выращиваете растения вдоль наклонной поверхности, корни растут из семян не прямо, а скорее отклоняются в одну сторону. Эта стратегия роста называется «перекосом». Дарвин предположил, что причина тому — сочетание гравитации и касания корней — и 130 лет все остальные тоже так считали.

Но корни выросли с перекосом и без гравитации. В 2010 году мы увидели, что корни растений, выращенных на МКС, преодолели весь путь по поверхности чашки Петри с идеальным перекосом корней — без какой-либо гравитации. Это было сюрпризом. Очевидно, не гравитация стоит за паттерном роста корней.

У растений на МКС есть второй потенциальный источник информации, от которого они могли отталкиваться: свет. Мы предположили, в отсутствие силы тяжести, которая могла бы указать корням расти в направлении «прочь» от листьев, свет играет большую роль в ориентации корней.

Выяснилось, что да, свет очень важен, но не только свет — должен быть градиент интенсивности света, тогда он будет выступать в качестве ценного руководства. Представьте его как хороший запах: вы можете с закрытыми глазами найти на кухне источник запаха, если духовка с печеньем только открылась, но если весь дом будет в равной степени утоплен в аромате шоколадного печенья, вы вряд ли его найдете.

Настройка метаболизма на лету

Светящиеся растения позволяют нам узнать, какие гены активны, поэтому мы можем сказать, какие белки производятся.

Мы отслеживаем изменения экспрессии генов в режиме реального времени, отмечая конкретные белки флуоресцентной меткой. Растения с добавлением светящихся флуоресцентных белков могут «рассказывать» о том, как реагируют на свое окружение. Такие инженерские растения выступают как биологический сенсор — «биосенсор», если коротко. Специальные камеры и микроскопы позволяют нам наблюдать за тем, какое применение растение находит этим флуоресцентным белкам.

Взгляд из космоса

Такого рода исследование дает нам новое понимание того, как растение воспринимает и реагирует на внешние раздражители на фундаментальном, молекулярном уровне. Чем больше мы узнаем о том, как растение реагирует на новые и экстремальные условия, тем больше мы знаем о том, как растение будет реагировать на изменение условий и здесь, на Земле.

Конечно же, наши исследования в этой области вносят вклад в коллективные усилия по выведению биологии за пределы планеты. Тот факт, что гравитация не так важна для растений, как мы когда-то считали, это приятная новость для перспектив разведения культур на других планетах с низкой гравитацией и даже на кораблях вообще без гравитации. Люди готовы покинуть планету, и когда мы покинем орбиту Земли, будьте уверены, с нами будут растения.

Источник

Оцените статью