Изменения возбудимости при действии постоянного тока аккомодация электротон катодическая депрессия

Действие постоянного тока на возбудимые ткани

В отличие от переменного тока, для которого характерно лишь раздражающее действие, постоянный ток вызывает два основных эффекта – раздражающий и поляризующий, который будет являться предметом дальнейшего рассмотрения.

Закон физиологического электротона. При действии постоянного тока на возбудимую ткань возбудимость в области катода сперва повышается ( катэлектротон ), затем понижается ( обратный катэлектротон). В области анода возбудимость сперва понижается (анэлектротон), затем повышается ( обратный анэлектротон ).

Для выяснения природы этих изменений необходимо рассмотреть изменения мембранного потенциала и уровня критической деполяризации в областях применения анода и катода.

Первично поляризующий эффект постоянного тока связан с пассивной деполяризацией мембраны в области катода ( происходит отталкивание анионов, обусловливающих отрицательный заряд внутренней стороны мембраны ) и геперполяризацией в области анода ( обратное притягивание анионов ), рис. 16.

В результате поляризующего действия постоянного тока в области катода происходит пассивная деполяризация, порог возбуждения снижается, а возбудимость возрастает. Эти изменения пассивные, так как не связаны с изменением свойств мембраны (рис. 17).

В дальнейшем происходит изменение уровня критической деполяризации, обусловленное инактивацией части натриевых каналов. При этом возрастает выходящий ток калия. В результате увеличения порога возбуждения возбудимость уменьшается. Эти изменения активные, так как отражают изменения натриевой и калиевой проводимости мембраны.

Натриевая инактивация в области катода при длительном действии постоянного тока может достигать столь значительной величины, что развивается катотическая депрессия – полное исчезновение возбудимости.

Поляризующее действие постоянного тока в области анода вызывает пассивную гиперполяризацию. Порог возбуждения повышается, возбудимость снижается. Эти изменения возбудимости пассивные. При длительном действии постоянного тока в области анода увеличивается потенциалзависимость натриевых каналов и снижается калиевая проводимость мембраны. В результате уровень критической деполяризации приближается к Е0 и возбудимость возрастает. Эти изменения – активные.

Закон полярного действия. При действии постоянного тока на возбудимую ткань возбуждение возникает на полюсах: при замыкании – в области катода, при размыкании – в области анода.

Источник

17.6 Возбудимость, методы её оценки. Изменения возбудимости при действии постоянного тока (электротон, катодическая депрессия, аккомодация).

Возбудимость– это способность возбудимых тканей на действие раздражителя отвечать возбуждением, которое проявляется в виде биоэлектрического процесса и специфической ответной реакции.

Подпороговое пассивное поведение клеточной мембраны называется электротоническим, или электротоном.

Закон физиологического электротона(2 закон Пфлюгера) – закон об изменении физиологических свойств тканей при прохождении через них постоянного тока:

При прохождении через ткань постоянного тока в области катода возбудимость и проводимость повышаются, а лабильность снижается(физиологический Кат-электротон), в области анода возбудимость и проводимость понижается, а лабильность повышается – физиологический АН-электротон.

Дополнение Вериго– при прохождении через ткань сильного или длительного постоянного тока повышенная возбудимость в области катода сменяется пониженной – катодическая депрессия, а пониженная возбудимость в области анода сменяется повышенной – анодическая экзальтация. ИТОГ: Возбудимость клетки не зависит ни от величины мембранного потенциала, ни от величины критического уровня деполяризации, а определяется их соотношением: чем меньше между ними разница, тем выше возбудимость и наоборот

Закон Дюбуа-Раймона: Раздражающее действие постоянного тока не зависит ни от силы тока (его плотности), ни от длительности действия(времени), а определяется скоростью его нарастания: чем быстрее меняется ток во времени, тем большей раздражающей силой он обладает.

Аккомодация ткани– явление приспособления (снижения возбудимости) ткани к действию медленно-нарастающего раздражителя.

Читайте также:  Особенности мышления при депрессии

18.7 Соотношения фаз изменения возбудимости при возбуждении с фазами потенциала действия.

1) местный ответ — физиологический катэлектротон. 2) высоковольтный пик — катодическая депрессия 3) следовая деполяризация — катэлектротон 4) следовая гиперполяризация — анэлектротон

Когда ткань возбуждается генерирует ПД, то временно в ней меняется возбудимость: сначала ткань становится совершенно невозбудимой (абсолютная рефрактерность) любой по силе стимул не способен вызывать в ней новый приступ возбуждения, эта фаза обычно наблюдается во время пика ПД, затем происходит постепенное восстановление возбудимости до исходного состояния (фаза относительной рефрактерности) – в этот момент раздражитель может вызвать возбуждение (генерацию нового ПД), но для этого он должен быть выше порогового (исходного). Затем в фазу следовой негативности возбудимость повышается (супервозбудимость или фаза экзальтации). В этот момент подпороговые раздражители могут вызвать возбуждение. В тканях, в которых ярко проявилась следовая гиперполяризация наблюдается еще одна фаза- субнормальности (фаза сниженной возбудимости).

19.8 Строение и классификация синапсов. Механизм передачи сигналов в синапсах ( электрических и химических) Ионные механизмы постсинаптических потенциалов, их виды.

Синапсом называют образование, обеспечивающее передачу возбуждения от одной структуры к другой.

Синапсы по способу передачи сигнала: I.Химические (передача сигналов с помощью медиатора)

II.Электрические (нексусы) – нет у высш животных и у человека

Синапсы: I. Центральные (>60)

II. Периферические : 1) Соматические (нервно-мышечные)

2) Вегетативные: 1. Ганглионарные

2. Эффекторные(симпатические и парасимпатические)

Синапсы по характеру действия на воспринимающую структуру: I. возбуждающие

По местоположению выделяют нервно-мышечные синапсы и нейронейрональные, последние в свою очередь делятся на аксосоматические, аксоаксональные, аксодендритические, дендросоматические.

В химическом синапсе выделяют 3 элемента :

пресинаптическую область (пресинаптическая терминаль);

Пресинаптическая областьпредставляет собой демиелинизированный терминальный участок отростка нервной клетки. По форме пресинаптическая терминаль напоминает собой колбу, прилежащую основанием к участку мембраны возбудимой клетки. Наиболее существенной чертой пресинаптической области является скопление пресинаптических пузырьков диаметром 50 мм (везикул), в которых содержится медиатор (химическое соединение, которое является материальным носителем сигнала к реципиентской клетке). Кроме везикул с медиатора в пресинаптической области содержится большое количество митохондрий и лизосом, что свидетельствует о высокой активности обменных процессов в этой области. Кроме того, в этой области обнаружены предшественники медиаторов и продукты их метаболизма.

Синаптическая щель. В химических синапсах составляет от 20 до 50 мм. Здесь содержаться вода, электролиты, олигосахариды, ферменты, участвующие в расщеплении медиатора.

Постсинаптическая область. Включает субсинаптическую мембрану (участок постсинаптической мембраны, имеющий специальный аппарат -рецепторы, характеризующиеся сродством к медиатору. В этой же области имеются химически-чувствительные ионные каналы. Собственно постсинап-тическая мембрана — участок постсинаптической мембраны, которая содержит потенциал-зависимые ионные каналы и на которой происходит генерация постсинаптических потенциалов.

Современные представления о механизмах передачи возбуждения в синапсе.

ПД распространяется по нервному волокну к пресинаптической области.

Изменение проницаемости мембраны пресинаптического образования к ионам Са ++ и поступление Са ++ в пресинаптическом образовании.

Движение везикул с активным медиатором пресинаптической области к пресинаптической мембране и выделение медиатора в синаптическую щель методом экзоцитоза.

Движение медиатора к субсинаптической мембране постсинаптической области и взаимодействие с соответствующими рецепторами мембраны.

Далее возможны два варианта: 1- либо само взаимодействие медиатора с рецептором приводит к активации ионных каналов субсинаптической мембраны (это имеет место в некоторых холинэргических синапсах; 2 — либо вначале активируется вторичный посредник, а затем уже включается цепь биохимических процессов, приводящая к изменению проницаемости ионных каналов. Изменение проницаемости ионных каналов приводит к формированию местных токов и генерации на постсинаптической мембране постсинаптического потенциала.

В зависимости от того по отношению к какому иону меняется проницаемость мембран, возможны два варианта постсинаптических потенциалов — возбуждающий, деполяризационный (ВПСП) и тормозной, гиперполяризационный (ТПСП).

В основе ВПСП лежит повышение проницаемости мембраны по отношению к ионам Nа + , а ТПСП- по отношению к ионам К + иCl — . Характер активности тех или иных каналов определяетсяхимической структуроймедиатора, особенностью рецепторного образования, а также связанного с ним вторичного посредника.

Читайте также:  Для чего нам эмоции радости

Электрические синапсы обладают односторонним проведением возбуждения. Это легко доказать при регистрировании электриче­ского потенциала на синапсе: при раздражении афферентных путей мембрана синапса деполяризуется, а при раздражении эфферентных волокон — гиперполяризуется. Оказалось, что синапсы нейронов с одинаковой функцией обладают двусторонним проведением возбуж­дения (например, синапсы между двумя чувствительными клетка­ми), а синапсы между разнофункциональными нейронами (сенсор­ные и моторные) обладают односторонним проведением. Функции электрических синапсов заключаются прежде всего в обеспечении срочных реакций организма. Этим, видимо, объясняется располо­жение их у животных в структурах, обеспечивающих реакцию бегства, спасения от опасности и т. д.

Электрический синапс сравнительно мало утомляем, устойчив к изменениям внешней и внутренней среды. Видимо, эти качества наряду с быстродействием обеспечивают высокую надежность его работы.

Источник

Изменения возбудимости при действии постоянного тока аккомодация электротон катодическая депрессия

Исследования зависимости силы-длительности показали, что она имеет гиперболический характер. Ток меньше некоторой минимальной величины не вызывает возбуждение, как бы длительно он не действовал, и чем короче импульсы тока, тем меньшую раздражающую способность они имеют. Причиной такой зависимости является мембранная емкость. Очень «короткие» токи не успевают разрядить эту емкость до критического уровня деполяризации. Минимальная величина тока, способная вызвать возбуждение при неограниченно длительном его действии, называется реобазой. Время, в течение которого ток, равный реобазе, вызывает возбуждение, называется полезным временем.

Закон силы-времени: раздражающее действие постоянного тока зависит не только от его величины, но и от времени, в течение которого он действует. Чем больше ток, тем меньше времени он должен действовать на возбудимые ткани, чтобы вызвать возбуждение (рис.3).

Закон полярного действия постоянного тока: при замыкании тока возбуждение возникает под катодом, а при размыкании – под анодом. Прохождение постоянного электрического тока через нервное или мышечное волокно вызывает изменение мембранного потенциала. Так, в области приложения катода положительный потенциал на наружной стороне мембраны уменьшается, возникает деполяризация, которая быстро достигает критического уровня и вызывает возбуждение. В области же приложения анода положительный потенциал на наружной стороне мембраны возрастает, происходит гиперполяризация мембраны и возбуждение не возникает. Но при этом под анодом критический уровень деполяризации смещается к уровню потенциала покоя. Поэтому при размыкании цепи тока гиперполяризация на мембране исчезает, и потенциал покоя, возвращаясь к исходной величине, достигает смещенного критического уровня и возникает возбуждение.

Закон физиологического электротона: действие постоянного тока на ткань сопровождается изменением ее возбудимости. При прохождении постоянного тока через нерв или мышцу порог раздражения под катодом и в соседних с ним участках понижается вследствие деполяризации мембраны (возбудимость повышается). В области приложения анода происходит повышение порога раздражения, т. е. снижение возбудимости вследствие гипериоляризации мембраны. Эти изменения возбудимости под катодом и анодом получили название электротона (электротоническое изменение возбудимости). Повышение возбудимости под катодам называется катэлектротоном, а снижение возбудимости иод анодом – анэлектротоном.

При дальнейшем действии постоянного тока первоначальное повышение возбудимости под катодом сменяется ее понижением, развивается так называемая католическая депрессия. Первоначальное же снижение возбудимости под анодом сменяется ее повышением – анодная экзальтация. При этом в области приложения катода – инактивация натриевых каналов, а в области действия анода происходит снижение калиевой проницаемости и ослабление исходной инактивации натриевой проницаемости.

Физиология нервов и нервных волокон

Нервные волокна выполняют специализированную функцию – проведение нервных импульсов. По морфологическому признаку волокна делятся на миелиновые (покрытые миелиновой оболочкой) и безмиелиновые. Нерв состоит из большого числа нервных волокон (миелиновых и безмиелиновых), заключенных в общую оболочку.

Читайте также:  Как поднять настроение мужчине по переписке если у него неприятности

Нервное волокно обладает следующими свойствами: возбудимостью, проводимостью и лабильностью.

Распространение возбуждения по нервным волокнам осуществляется на основе ионных механизмов генерации потенциала действия. При распространении возбуждения по безмиелиновому нервному волокну местные электрические токи, которые возникают между его возбужденным участком, заряженным отрицательно, и невозбужденными, Заряженными положительно, деполяризуют мембрану до критического уровня, что приводит к генерации ПД в соседних невозбужденных участках, которые становятся возбужденными, и т. д. Этот процесс происходит в каждой точке мембраны на всем протяжении волокна. Такое проведение возбуждения называется непрерывным. Возбуждение по нервному волокну может распространяться в обе стороны от места его возникновения. Если на нервное волокно наложить регистрирующие электроды на некотором расстоянии друг от друга, а между ними нанести раздражение, то возбуждение зафиксируют электроды по обе стороны от места раздражения.

Наличие у миелиновых волокон оболочки, обладающей высоким электрическим сопротивлением, а также участков волокна, лишенных оболочки (перехватов Ранвье), приводит к тому, что местные электрические токи не могут проходить через миелин, они возникают только между соседними перехватами Ранвье, где деполяризуют мембрану невозбужденного перехвата и генерируют ПД (рис.4). Возбуждение как бы «перепрыгивает» через участки нервного волокна, покрытые миелином. Такой механизм распространения возбуждения называется сальтаторным, или скачкообразным, он позволяет более быстро и экономично передавать информацию по сравнению с непрерывным проведением, поскольку в него вовлекается не вся мембрана, а только ее небольшие участки.

Амплитуда ПД в 5 6 раз превышает пороговую величину, не-обходимую для возбуждения соседнего перехвата, поэтому ПД может «перепрыгивать» не только через один, но и через несколько перехватов. Это явление может наблюдаться при снижении возбудимости соседнего перехвата под действием какого-либо фармакологического вещества, например, новокаина, кокаина и др.

Проведение возбуждения по нервному волокну возможно лишь в том случае, если сохранена его анатомическая и физиологическая целостность. Различные факторы, изменяющие свойства волокон (наркотические вещества, охлаждение, перевязка и т. д.), приводят к нарушению передачи возбуждения.

Возбуждение по нервному волокну, входящему в состав нерва, распространяется изолированно, т. е. не переходя с одного волокна на другое. Это обусловлено тем, что сопротивление жидкости, заполняющей межклеточные пространства, значительно ниже сопротивления мембраны нервных волокон, и основная часть тока, возникающего между возбужденным и невозбужденным участками, проходит по межклеточной жидкости, не действуя на другие волокна. Если бы возбуждение передавалось с одного нервного волокна на другое, то нормальное функционирование организма было бы невозможно, так как нервы содержат большое количество чувствительных, двигательных, вегетативных волокон, которые несут информацию как от различных рецепторов к ЦНС, так и от ЦНС к эффекторным органам.

Нервные волокна по скорости проведения возбуждения делятся на три типа: А, В, С. Волокна типа А, в свою очередь, делятся на подтипы: А-а, А-р, А-у, А-5 (рис. 5).

Волокна типа А покрыты миелиновой оболочкой. Наиболее толстые из них А-а имеют диаметр 12 – 22 мкм и скорость проведения возбуждения 70–120 м/с. Эти волокна проводят возбуждение от моторных нервных центров спинного мозга к скелетным мышцам (двигательные волокна) и от рецепторов мышц к соответствующим нервным центрам.

Три другие группы волокон типа А (р, у, 5) имеют меньший диаметр – от 8 до 1 мкм и меньшую скорость проведения возбуждения – от 5 до 70 м/с. Волокна этих групп преимущественно проводят возбуждение от различных рецепторов (тактильных, температурных, болевых, рецепторов внутренних органов) в ЦНС, за исключением у-волокон, значительная часть которых проводит возбуждение от спинного мозга к интрафузальным мышечным волокнам.

К волокнам типа В относятся миелинизироваыные преганглионарные волокна вегетативной нервной системы. Их диаметр – 1 – 3,5 мкм, а скорость проведения возбуждения – 3–18 м/с.

Источник

Оцените статью