- Физиологический электрон. Катодическая депрессия по Вериго.
- Закон физиологического электротона
- 17.6 Возбудимость, методы её оценки. Изменения возбудимости при действии постоянного тока (электротон, катодическая депрессия, аккомодация).
- 18.7 Соотношения фаз изменения возбудимости при возбуждении с фазами потенциала действия.
- 19.8 Строение и классификация синапсов. Механизм передачи сигналов в синапсах ( электрических и химических) Ионные механизмы постсинаптических потенциалов, их виды.
Физиологический электрон. Катодическая депрессия по Вериго.
При замыкании и прохождении постоянного тока через нерв или мышцу изменяются физиологические и физико-химические свойства на полюсах. При прохождении постоянного тока в области приложения катода возбудимость временно повышается, а в области приложения анода возбудимость временно понижается. Даже слабые и кратковременные токи вслед за повышением возбудимости вызывают понижение возбудимости в области действия катода. Особенно отчетливо выступает это последующее понижение возбудимости в этой области при действии относительно сильных и продолжительных токов — катодическая депрессия (Б. Ф. Вериго, ). Катодическая депрессия может превратись проведение нервных импульсов. Она исчезает через 7-8 мс после выключения постоянного тока. В области действия катода при замыкании увеличивается скорость проведения возбуждения, а в области действия анода она уменьшается. В области действия катода уменьшается высота волны возбуждения и увеличивается её продолжительность, а в области действия анода, наоборот, высота увеличивается, а продолжительность её уменьшается. Продолжительность полной невозбудимости в области действия катода увеличивается, а анода – уменьшается. Поэтому лабильность в области действия катода уменьшается, а в области действия анода увеличивается. Эти изменения физиологических свойств нерва в области действия катода обозначаются как катэлектротон, а в области действия анода — как анэлектротон. Изменения физиологических свойств нерва происходят не только в месте приложения полюсов постоянного тока, но и на некотором расстоянии от них. На расстоянии около 2 см за пределами катода возбудимость нерва понижается, а за пределами анода она повышается. Этот факт открыл Н. Я. Перна (1914) и обозначил его как периэлектротон. Следовательно, в периферических нервах не только распространяются волны возбуждения, но при появлении очага возбуждения на некотором расстоянии от него возникают и устанавливаются вдоль всего нерва участки повышенной и пониженной возбудимости в виде стационарной волны. Таким образом, в периферических нервах имеется двойная нервная сигнализация: импульсная и тоническая. Изменения возбудимости нервов при действии постоянного тока наблюдаются и у человека. Электрод с малой поверхностью, или дифферентный, прикладывают к раздражаемой области нерва, а электрод с большой поверхностью, или индифферентный, накладывают на отдаленную часть тела. При таком униполярном способе раздражения действие тока проявляется только вблизи дифферентного электрода. В зависимости от силы тока получают различные результаты. При слабой силе постоянного тока раздражение в области анода является подпороговым. Поэтому независимо от направления тока сокращение получается только в области катода, так как возбуждение на этом полюсе больше, чем на аноде. При средней силе тока раздражение в области анода достигает порога. Поэтому независимо от направления тока сокращения получаются и в области катода и в области анода. При сильном восходящем токе возбуждение возникает в области катода при замыкании, но оно не может достигнуть мышцы, так как по пути возникает анэлектротон (резкое понижение возбудимости и проводимости), поэтому сокращение получается только при размыкании. При сильном нисходящем токе замыкание вызывает сокращение мышцы, а при размыкании сокращения нет. Это отсутствие сокращения зависит от того, что в момент размыкания в области катода возбудимость и проводимость резко понижаются и возбуждение, возникающее на аноде, не проводится к мышце.
30. Классификация нервных волокон. Закономерности проведения возбуждения….
Нервные волокна различаются по диаметру и степени миелинизации. Чем больше диаметр нервного волокна и степень его миелинизации, тем выше скорость проведения возбуждения. Волокна с разной скоростью проведения выполняют различные физиологические функции. Нервные волокна подразделяются на 6 типов.
Нервные волокна всех групп обладают общими свойствами: • нервные волокна практически неутомляемы; • нервные волокна обладают высокой лабильностью, т. е. могут воспроизводить потенциал действия с очень высокой частотой.
Законы проведения возбуждения по нервным волокнам • Закон анатомической и физиологической непрерывности – возбуждение может распространяться по нервному волокну только в случае его морфологической и функциональной целостности. • Закон двустороннего проведения возбуждения – возбуждение, возникающее в одном участке нерва, распространяется в обе стороны от места своего возникновения. В организме возбуждение всегда распространяется по аксону от тела клетки (ортодромно). • Закон изолированного проведения – возбуждение, распространяющееся по волокну, входящему в состав нерва, не передается на соседние нервные волокна.
Механизм проведения возбуждения по безмиелиновым нервным волокнам
В состоянии покоя вся внутренняя поверхность мембраны нервного волокна несет отрицательный заряд, а наружная сторона мембраны – положительный. Электрический ток между внутренней и наружной стороной мембраны не протекает, так как липидная мембрана имеет высокое электрическое сопротивление. Во время развития потенциала действия в возбужденном участке мембраны происходит реверсия заряда . На границе возбужденного и невозбужденного участка начинает протекать электрический ток . Электрический ток раздражает ближайший участок мембраны и приводит его в состояние возбуждения , в то время как ранее возбужденные участки возвращаются в состояние покоя . Таким образом, волна возбуждения охватывает все новые участки мембраны нервного волокна.
Механизм проведения возбуждения по миелиновым нервным волокнам.
В миелинизированном нервном волокне участки мембраны, покрытые миелиновой оболочкой, являются невозбудимыми; возбуждение может возникать только в участках мембраны, расположенных в области перехватов Ранвье. При развитии ПД в одном из перехватов Ранвье происходит реверсия заряда мембраны . Между электроотрицательными и электроположительными участками мембраны возникает электрический ток, который раздражает соседние участки мембраны . Однако в состояние возбуждения может перейти только участок мембраны в области следующего перехвата Ранвье . Таким образом, возбуждение распространяется по мембране скачкообразно (сальтаторно) от одного перехвата Ранвье к другому.
Раздражимость как свойство живой системы. Законы раздражения.
Раздражимость — способность живого организма реагировать на внешнее воздействие изменением своих физико-химических и физиологических свойств. Раздражимость проявляется в изменениях текущих значений физиологических параметров, превышающих их сдвиги при покое. Раздражимость является универсальным проявлением жизнедеятельности всех биосистем. Эти изменения окружающей среды, вызывающие реакцию организма, могут включать в себя широкий репертуар реакций, начиная с диффузных реакций протоплазмы у простейших и кончая сложными, высокоспециализованными реакциями у человека. В организме человека раздражимость часто связана со свойством нервной, мышечной и железистой тканей осуществлять ответную реакцию в виде выработки нервного импульса, мышечного сокращения или секреции веществ (слюны, гормонов и т. д.). У живых организмов, лишенных нервной системы, раздражимость может проявляться в движениях. Так, амебы и другие простейшие покидают неблагоприятные растворы с высокой концентрацией соли. А растения изменяют положение побегов для максимального поглощения света (тянутся к свету). Раздражимость — фундаментальное свойство живых систем: её наличие — классический критерий, по которому отличают живое от неживого. Минимальная величина раздражителя, достаточная для проявления раздражимости, называется порогом восприятия. Явления раздражимости у растений и животных имеют много общего, хотя их проявления у растений резко отличаются от привычных форм двигательной и нервной деятельности животных
Законы раздражения возбудимых тканей: 1) закон силы – возбудимость обратно-пропорциональна пороговой силе: чем больше пороговая сила, тем меньше возбудимость. Однако для возникновения возбуждения недостаточно только действия силы раздражения. Необходимо, чтобы это раздражение длилось какое-то время; 2) закон времени действия раздражителя. При действии одной и той же силы на разные ткани потребуется разная длительность раздражения, что зависит от способности данной ткани к проявлению своей специфической деятельности, то есть возбудимости: наименьшее время потребуется для ткани с высокой возбудимостью и наибольшее время — с низкой возбудимостью. Таким образом, возбудимость обратно-пропорциональна времени действия раздражителя: чем меньше время действия раздражителя, тем больше возбудимость. Возбудимость ткани определяется не только силой и длительностью раздражения, но и скоростью (быстротой) нарастания силы раздражения, что определяется третьим законом — законом скорости нарастания силы раздражения (отношения силы раздражителя ко времени его действия): чем больше скорость нарастания силы раздражения, тем меньше возбудимость. Для каждой ткани существует своя пороговая скорость нарастания силы раздражения.
Способность ткани изменять свою специфическую деятельность в ответ на раздражение (возбудимость) находится в обратной зависимости от величины пороговой силы, времени действия раздражителя и быстроты (скорости) нарастания силы раздражения.
Источник
Закон физиологического электротона
Действие постоянного электрического тока на ткань сопровождается изменением ее возбудимости |
Различают 3 вида физиологического электротона или изменения возбудимости:
Катэлектротон – изменение возбудимости под катодом.
В момент замыкания под катодом формируется деполяризация и возбудимость повышается.
По мере удаления от катода количество его «-» зарядов, а следовательно и выраженность деполяризации уменьшается.
В результате возбудимость уменьшается, но она остается выше, чем в состоянии покоя
Анэлектротон – изменение возбудимости под анодом.
В момент замыкания под анодом формируется гиперполяризация и возбудимость снижается.
По мере удаления от анода количество его «+» зарядов, а, следовательно, и гиперполяризация уменьшается.
В результате возбудимость увеличивается, но она остается ниже, чем в состоянии покоя
Периэлектротон – обратное изменение возбудимости вне электротонических областей.
В зоне прекращения действия катода возбудимость снижается.
В зоне прекращения влияний анода она, наоборот, увеличивается
При длительном прохождении постоянного тока через ткань происходит извращение измененной возбудимости
При длительном замыкании под катодом происходит Инактивация Na проницаемости
Повышение уровня критической деполяризации
Увеличение порога деполяризации
Снижение вначале повышенной возбудимости
Это явление получило название катодическая депрессия
При длительном замыкании под анодом происходит
Снижение К проницаемости
Уровень критической деполяризации снижается
Порог деполяризации уменьшается
Повышается вначале сниженная возбудимость
Это явление получило название анодическая экзальтация
Этот закон необходимо учитывать в медицинской практике
С одной стороны, он может быть использован, если требуется заблокировать проведение возбуждения по нервной или мышечной ткани (катодическая депрессия) или повысить возбудимость (анодическая экзальтация)
С другой стороны, необходимо помнить о возможности привыкания к длительному действию раздражителей, в частности, фармацевтических препаратов, влияющих на возбудимость мембраны
Источник
17.6 Возбудимость, методы её оценки. Изменения возбудимости при действии постоянного тока (электротон, катодическая депрессия, аккомодация).
Возбудимость– это способность возбудимых тканей на действие раздражителя отвечать возбуждением, которое проявляется в виде биоэлектрического процесса и специфической ответной реакции.
Подпороговое пассивное поведение клеточной мембраны называется электротоническим, или электротоном.
Закон физиологического электротона(2 закон Пфлюгера) – закон об изменении физиологических свойств тканей при прохождении через них постоянного тока:
При прохождении через ткань постоянного тока в области катода возбудимость и проводимость повышаются, а лабильность снижается(физиологический Кат-электротон), в области анода возбудимость и проводимость понижается, а лабильность повышается – физиологический АН-электротон.
Дополнение Вериго– при прохождении через ткань сильного или длительного постоянного тока повышенная возбудимость в области катода сменяется пониженной – катодическая депрессия, а пониженная возбудимость в области анода сменяется повышенной – анодическая экзальтация. ИТОГ: Возбудимость клетки не зависит ни от величины мембранного потенциала, ни от величины критического уровня деполяризации, а определяется их соотношением: чем меньше между ними разница, тем выше возбудимость и наоборот
Закон Дюбуа-Раймона: Раздражающее действие постоянного тока не зависит ни от силы тока (его плотности), ни от длительности действия(времени), а определяется скоростью его нарастания: чем быстрее меняется ток во времени, тем большей раздражающей силой он обладает.
Аккомодация ткани– явление приспособления (снижения возбудимости) ткани к действию медленно-нарастающего раздражителя.
18.7 Соотношения фаз изменения возбудимости при возбуждении с фазами потенциала действия.
1) местный ответ — физиологический катэлектротон. 2) высоковольтный пик — катодическая депрессия 3) следовая деполяризация — катэлектротон 4) следовая гиперполяризация — анэлектротон
Когда ткань возбуждается генерирует ПД, то временно в ней меняется возбудимость: сначала ткань становится совершенно невозбудимой (абсолютная рефрактерность) любой по силе стимул не способен вызывать в ней новый приступ возбуждения, эта фаза обычно наблюдается во время пика ПД, затем происходит постепенное восстановление возбудимости до исходного состояния (фаза относительной рефрактерности) – в этот момент раздражитель может вызвать возбуждение (генерацию нового ПД), но для этого он должен быть выше порогового (исходного). Затем в фазу следовой негативности возбудимость повышается (супервозбудимость или фаза экзальтации). В этот момент подпороговые раздражители могут вызвать возбуждение. В тканях, в которых ярко проявилась следовая гиперполяризация наблюдается еще одна фаза- субнормальности (фаза сниженной возбудимости).
19.8 Строение и классификация синапсов. Механизм передачи сигналов в синапсах ( электрических и химических) Ионные механизмы постсинаптических потенциалов, их виды.
Синапсом называют образование, обеспечивающее передачу возбуждения от одной структуры к другой.
Синапсы по способу передачи сигнала: I.Химические (передача сигналов с помощью медиатора)
II.Электрические (нексусы) – нет у высш животных и у человека
Синапсы: I. Центральные (>60)
II. Периферические : 1) Соматические (нервно-мышечные)
2) Вегетативные: 1. Ганглионарные
2. Эффекторные(симпатические и парасимпатические)
Синапсы по характеру действия на воспринимающую структуру: I. возбуждающие
По местоположению выделяют нервно-мышечные синапсы и нейронейрональные, последние в свою очередь делятся на аксосоматические, аксоаксональные, аксодендритические, дендросоматические.
В химическом синапсе выделяют 3 элемента :
пресинаптическую область (пресинаптическая терминаль);
Пресинаптическая областьпредставляет собой демиелинизированный терминальный участок отростка нервной клетки. По форме пресинаптическая терминаль напоминает собой колбу, прилежащую основанием к участку мембраны возбудимой клетки. Наиболее существенной чертой пресинаптической области является скопление пресинаптических пузырьков диаметром 50 мм (везикул), в которых содержится медиатор (химическое соединение, которое является материальным носителем сигнала к реципиентской клетке). Кроме везикул с медиатора в пресинаптической области содержится большое количество митохондрий и лизосом, что свидетельствует о высокой активности обменных процессов в этой области. Кроме того, в этой области обнаружены предшественники медиаторов и продукты их метаболизма.
Синаптическая щель. В химических синапсах составляет от 20 до 50 мм. Здесь содержаться вода, электролиты, олигосахариды, ферменты, участвующие в расщеплении медиатора.
Постсинаптическая область. Включает субсинаптическую мембрану (участок постсинаптической мембраны, имеющий специальный аппарат -рецепторы, характеризующиеся сродством к медиатору. В этой же области имеются химически-чувствительные ионные каналы. Собственно постсинап-тическая мембрана — участок постсинаптической мембраны, которая содержит потенциал-зависимые ионные каналы и на которой происходит генерация постсинаптических потенциалов.
Современные представления о механизмах передачи возбуждения в синапсе.
ПД распространяется по нервному волокну к пресинаптической области.
Изменение проницаемости мембраны пресинаптического образования к ионам Са ++ и поступление Са ++ в пресинаптическом образовании.
Движение везикул с активным медиатором пресинаптической области к пресинаптической мембране и выделение медиатора в синаптическую щель методом экзоцитоза.
Движение медиатора к субсинаптической мембране постсинаптической области и взаимодействие с соответствующими рецепторами мембраны.
Далее возможны два варианта: 1- либо само взаимодействие медиатора с рецептором приводит к активации ионных каналов субсинаптической мембраны (это имеет место в некоторых холинэргических синапсах; 2 — либо вначале активируется вторичный посредник, а затем уже включается цепь биохимических процессов, приводящая к изменению проницаемости ионных каналов. Изменение проницаемости ионных каналов приводит к формированию местных токов и генерации на постсинаптической мембране постсинаптического потенциала.
В зависимости от того по отношению к какому иону меняется проницаемость мембран, возможны два варианта постсинаптических потенциалов — возбуждающий, деполяризационный (ВПСП) и тормозной, гиперполяризационный (ТПСП).
В основе ВПСП лежит повышение проницаемости мембраны по отношению к ионам Nа + , а ТПСП- по отношению к ионам К + иCl — . Характер активности тех или иных каналов определяетсяхимической структуроймедиатора, особенностью рецепторного образования, а также связанного с ним вторичного посредника.
Электрические синапсы обладают односторонним проведением возбуждения. Это легко доказать при регистрировании электрического потенциала на синапсе: при раздражении афферентных путей мембрана синапса деполяризуется, а при раздражении эфферентных волокон — гиперполяризуется. Оказалось, что синапсы нейронов с одинаковой функцией обладают двусторонним проведением возбуждения (например, синапсы между двумя чувствительными клетками), а синапсы между разнофункциональными нейронами (сенсорные и моторные) обладают односторонним проведением. Функции электрических синапсов заключаются прежде всего в обеспечении срочных реакций организма. Этим, видимо, объясняется расположение их у животных в структурах, обеспечивающих реакцию бегства, спасения от опасности и т. д.
Электрический синапс сравнительно мало утомляем, устойчив к изменениям внешней и внутренней среды. Видимо, эти качества наряду с быстродействием обеспечивают высокую надежность его работы.
Источник