- 17.6 Возбудимость, методы её оценки. Изменения возбудимости при действии постоянного тока (электротон, катодическая депрессия, аккомодация).
- 18.7 Соотношения фаз изменения возбудимости при возбуждении с фазами потенциала действия.
- 19.8 Строение и классификация синапсов. Механизм передачи сигналов в синапсах ( электрических и химических) Ионные механизмы постсинаптических потенциалов, их виды.
- 21) Основные отличия в строении и функционировании скелетной и гладкой мышц.
- 22) Законы действия постоянного тока на ткани ( Пфлюгер)
- 23) Катодическая депрессия Вериго
- 9. Законы раздражения. Полярный закон. Физиологический электротон. Като-дическая депрессия.
17.6 Возбудимость, методы её оценки. Изменения возбудимости при действии постоянного тока (электротон, катодическая депрессия, аккомодация).
Возбудимость– это способность возбудимых тканей на действие раздражителя отвечать возбуждением, которое проявляется в виде биоэлектрического процесса и специфической ответной реакции.
Подпороговое пассивное поведение клеточной мембраны называется электротоническим, или электротоном.
Закон физиологического электротона(2 закон Пфлюгера) – закон об изменении физиологических свойств тканей при прохождении через них постоянного тока:
При прохождении через ткань постоянного тока в области катода возбудимость и проводимость повышаются, а лабильность снижается(физиологический Кат-электротон), в области анода возбудимость и проводимость понижается, а лабильность повышается – физиологический АН-электротон.
Дополнение Вериго– при прохождении через ткань сильного или длительного постоянного тока повышенная возбудимость в области катода сменяется пониженной – катодическая депрессия, а пониженная возбудимость в области анода сменяется повышенной – анодическая экзальтация. ИТОГ: Возбудимость клетки не зависит ни от величины мембранного потенциала, ни от величины критического уровня деполяризации, а определяется их соотношением: чем меньше между ними разница, тем выше возбудимость и наоборот
Закон Дюбуа-Раймона: Раздражающее действие постоянного тока не зависит ни от силы тока (его плотности), ни от длительности действия(времени), а определяется скоростью его нарастания: чем быстрее меняется ток во времени, тем большей раздражающей силой он обладает.
Аккомодация ткани– явление приспособления (снижения возбудимости) ткани к действию медленно-нарастающего раздражителя.
18.7 Соотношения фаз изменения возбудимости при возбуждении с фазами потенциала действия.
1) местный ответ — физиологический катэлектротон. 2) высоковольтный пик — катодическая депрессия 3) следовая деполяризация — катэлектротон 4) следовая гиперполяризация — анэлектротон
Когда ткань возбуждается генерирует ПД, то временно в ней меняется возбудимость: сначала ткань становится совершенно невозбудимой (абсолютная рефрактерность) любой по силе стимул не способен вызывать в ней новый приступ возбуждения, эта фаза обычно наблюдается во время пика ПД, затем происходит постепенное восстановление возбудимости до исходного состояния (фаза относительной рефрактерности) – в этот момент раздражитель может вызвать возбуждение (генерацию нового ПД), но для этого он должен быть выше порогового (исходного). Затем в фазу следовой негативности возбудимость повышается (супервозбудимость или фаза экзальтации). В этот момент подпороговые раздражители могут вызвать возбуждение. В тканях, в которых ярко проявилась следовая гиперполяризация наблюдается еще одна фаза- субнормальности (фаза сниженной возбудимости).
19.8 Строение и классификация синапсов. Механизм передачи сигналов в синапсах ( электрических и химических) Ионные механизмы постсинаптических потенциалов, их виды.
Синапсом называют образование, обеспечивающее передачу возбуждения от одной структуры к другой.
Синапсы по способу передачи сигнала: I.Химические (передача сигналов с помощью медиатора)
II.Электрические (нексусы) – нет у высш животных и у человека
Синапсы: I. Центральные (>60)
II. Периферические : 1) Соматические (нервно-мышечные)
2) Вегетативные: 1. Ганглионарные
2. Эффекторные(симпатические и парасимпатические)
Синапсы по характеру действия на воспринимающую структуру: I. возбуждающие
По местоположению выделяют нервно-мышечные синапсы и нейронейрональные, последние в свою очередь делятся на аксосоматические, аксоаксональные, аксодендритические, дендросоматические.
В химическом синапсе выделяют 3 элемента :
пресинаптическую область (пресинаптическая терминаль);
Пресинаптическая областьпредставляет собой демиелинизированный терминальный участок отростка нервной клетки. По форме пресинаптическая терминаль напоминает собой колбу, прилежащую основанием к участку мембраны возбудимой клетки. Наиболее существенной чертой пресинаптической области является скопление пресинаптических пузырьков диаметром 50 мм (везикул), в которых содержится медиатор (химическое соединение, которое является материальным носителем сигнала к реципиентской клетке). Кроме везикул с медиатора в пресинаптической области содержится большое количество митохондрий и лизосом, что свидетельствует о высокой активности обменных процессов в этой области. Кроме того, в этой области обнаружены предшественники медиаторов и продукты их метаболизма.
Синаптическая щель. В химических синапсах составляет от 20 до 50 мм. Здесь содержаться вода, электролиты, олигосахариды, ферменты, участвующие в расщеплении медиатора.
Постсинаптическая область. Включает субсинаптическую мембрану (участок постсинаптической мембраны, имеющий специальный аппарат -рецепторы, характеризующиеся сродством к медиатору. В этой же области имеются химически-чувствительные ионные каналы. Собственно постсинап-тическая мембрана — участок постсинаптической мембраны, которая содержит потенциал-зависимые ионные каналы и на которой происходит генерация постсинаптических потенциалов.
Современные представления о механизмах передачи возбуждения в синапсе.
ПД распространяется по нервному волокну к пресинаптической области.
Изменение проницаемости мембраны пресинаптического образования к ионам Са ++ и поступление Са ++ в пресинаптическом образовании.
Движение везикул с активным медиатором пресинаптической области к пресинаптической мембране и выделение медиатора в синаптическую щель методом экзоцитоза.
Движение медиатора к субсинаптической мембране постсинаптической области и взаимодействие с соответствующими рецепторами мембраны.
Далее возможны два варианта: 1- либо само взаимодействие медиатора с рецептором приводит к активации ионных каналов субсинаптической мембраны (это имеет место в некоторых холинэргических синапсах; 2 — либо вначале активируется вторичный посредник, а затем уже включается цепь биохимических процессов, приводящая к изменению проницаемости ионных каналов. Изменение проницаемости ионных каналов приводит к формированию местных токов и генерации на постсинаптической мембране постсинаптического потенциала.
В зависимости от того по отношению к какому иону меняется проницаемость мембран, возможны два варианта постсинаптических потенциалов — возбуждающий, деполяризационный (ВПСП) и тормозной, гиперполяризационный (ТПСП).
В основе ВПСП лежит повышение проницаемости мембраны по отношению к ионам Nа + , а ТПСП- по отношению к ионам К + иCl — . Характер активности тех или иных каналов определяетсяхимической структуроймедиатора, особенностью рецепторного образования, а также связанного с ним вторичного посредника.
Электрические синапсы обладают односторонним проведением возбуждения. Это легко доказать при регистрировании электрического потенциала на синапсе: при раздражении афферентных путей мембрана синапса деполяризуется, а при раздражении эфферентных волокон — гиперполяризуется. Оказалось, что синапсы нейронов с одинаковой функцией обладают двусторонним проведением возбуждения (например, синапсы между двумя чувствительными клетками), а синапсы между разнофункциональными нейронами (сенсорные и моторные) обладают односторонним проведением. Функции электрических синапсов заключаются прежде всего в обеспечении срочных реакций организма. Этим, видимо, объясняется расположение их у животных в структурах, обеспечивающих реакцию бегства, спасения от опасности и т. д.
Электрический синапс сравнительно мало утомляем, устойчив к изменениям внешней и внутренней среды. Видимо, эти качества наряду с быстродействием обеспечивают высокую надежность его работы.
Источник
21) Основные отличия в строении и функционировании скелетной и гладкой мышц.
Гладкие мышцы характеризуются двумя особенностями. Во-первых, в отличие от скелетных мышц и миокарда они не имеют поперечной исчерченности (отсюда их название). Во-вторых, гладкие мышцы получают иннервацию не от соматического, а от вегетативного отдела нервной системы , поэтому лишены прямой произвольной регуляции. Гладкие мышцы пластичны, т.е. способны сохранять приданную растяжением длину без изменения напряжения. Скелетная мышца, наоборот, обладает малой пластичностью. Гладкомышечные волокна — веретенообразные клетки без поперечной исчерченности с одним ядром, способные к делению. Они содержат актиновые и миозиновые филаменты и сокращаются посредством механизма скользящих нитей. Скелетные мышцы в отличие от гладких способны совершать произвольные быстрые сокращения и производить этим значительную работу. Рабочим элементом мышцы является мышечное волокно. Мышечные волокна обладают тремя основными свойствами: возбудимостью — способностью отвечать на действия раздражителя генерацией потенциала действия; проводимостью — способностью проводить волну возбуждения вдоль всего волокна в обе стороны от точки раздражения; сократимостью — способностью сокращаться или изменять напряжение при возбуждении.
22) Законы действия постоянного тока на ткани ( Пфлюгер)
Впервые закономерности действия постоянного тока на нерв нервно-мышечного препарата исследовал в 19 веке Пфлюгер. Он установил, что при замыкании цепи постоянного тока, под отрицательным электродом, т.е. катодом возбудимость повышается, а под положительным – анодом снижается. Это называется законом действия постоянного тока. Изменение возбудимости ткани (например, нерва) под действием постоянного тока в области анода или катода называется физиологическим электротоном.
В настоящее время установлено, что под действием отрицательного электрода – катода потенциал мембраны клеток снижается. Это явление называется физическим катэлектротоном. Под положительным – анодом, он возрастает. Возникает физический анэлектртон. Так как, под катодом мембранный потенциал приближается к критическому уровню деполяризации, возбудимость клеток и тканей повышается. Под анодом мембранный потенциал возрастает и удаляется от критического уровня деполяризации, поэтому возбудимость клетки, ткани падает. Следует отметить, что при очень кратковременном действии постоянного тока (1 мс и менее) МП не успевает измениться, поэтому не изменяется и возбудимость ткани под электродами.
Постоянный ток широко используется в клинике для лечения и диагностики. Например, с помощью него производится электростимуляция нервов и мышц, физиопроцедуры: ионофорез и гальванизация.
23) Катодическая депрессия Вериго
Русский ученый Вериго показал, что при длительном действии постоянного тока на ткань, или при действии сильных раздражителей эти электротонические изменения возбудимости извращаются — под катодом начальное повышение возбудимости сменяется ее понижением (развивается т.н. катодическая депрессия), а под анодом сниженная возбудимость постепенно возрастает. Причина этих изменений возбудимости на полюсах постоянного тока связана с тем, что величина Ек меняется при длительном действии раздражителя. Под катодом (и при возбуждении) Ек постепенно удаляется от МП, снижается, так что наступает момент, когда разница Е0-Ек становиться больше исходной. Это приводит к падению возбудимости ткани. Напротив, под анодом Ек имеет тенденцию к возрастанию, постепенно приближаясь к Ео. Возбудимость при этом растет, так как уменьшается исходная разница между Ео и Ек.
Причиной изменения критического уровня деполяризации под катодом является инактивация натриевой проницаемости, обусловленная длительной деполяризацией мембраны. Вместе с этим значительно повышается проницаемость для К. Все это приводит к тому, что мембрана клетки утрачивает способность отвечать на действие раздражающих стимулов. Такие же изменения мембраны лежат и в основе рассмотренного уже явления аккомодации. Под анодом же при действии тока явления инактивации снижаются .
Источник
9. Законы раздражения. Полярный закон. Физиологический электротон. Като-дическая депрессия.
Полярный закон раздражения (закон Пфлюгера)
При замыкании цепи постоянного электрического тока возбуждение возникает только под катодом, а при размыкании — только под анодом
Доказать правильность закона можно при помощи опыта, в котором меняется расположение катода и анода на поврежденном и неповрежденном участках нерва, иннервирующего мышцу
Прохождение постоянного электрического тока через мембрану вызывает изменение мембранного потенциала покоя.
Так, при замыкании цепи возле катода скапливается его «-» заряд, который уменьшает «+» заряд наружной поверхности мембраны.
Разность потенциалов (между наружной и внутренней поверхностями мембраны) уменьшается, и мембранный потенциал изменяется в сторону уровня критической деполяризации, т.е. формируется деполяризация(возбудимость повышается).
Достижение критического уровня приводит к возникновению пикового потенциала (потенциала действия)
При замыкании цепи возле анода скапливается его «+» заряд.
Он увеличивает «+» заряд мембраны и величину мембранного потенциала
Мембранный потенциал удаляется от критического уровня, превышает значение потенциала покоя и формируетгиперполяризацию (возбудимость уменьшается)
При размыкании цепи, прекращение поступления дополнительного «+» заряда от анода приводит к уменьшению(восстановлению) заряда наружной поверхности мембраны.
Мембранный потенциал, уменьшаясь, приближается к критическому уровню
Формируется деполяризация (возбудимость увеличивается).
После достижения критического значения развивается пиковый потенциал
(Поскольку размыкание происходит после замыкания, а, следовательно, на фоне гиперполяризации и пониженной возбудимости, то для возникновения ПД необходим раздражитель, превышающий по силе пороговый — это анодно-размыкательный эффект)
При размыкании возле катода прекращается накопление его «-» заряда
Заряд наружной поверхности мембраны увеличивается (восстанавливается), мембранный потенциал, увеличиваясь, удаляется от критического уровня и возбуждение не возникает
Закон физиологического электротона
Действие постоянного электрического тока на ткань сопровождается изменением ее возбудимости
Различают 3 вида физиологического электротона или изменения возбудимости:
Катэлектротон — изменение возбудимости под катодом.
В момент замыкания под катодом формируется деполяризация и возбудимость повышается.
По мере удаления от катода количество его «-» зарядов, а следовательно и выраженность деполяризацииуменьшается.
В результате возбудимость уменьшается, но она остается выше, чем в состоянии покоя
Анэлектротон — изменение возбудимости под анодом.
В момент замыкания под анодом формируется гиперполяризация и возбудимость снижается.
По мере удаления от анода количество его «+» зарядов, а, следовательно, и гиперполяризация уменьшается.
В результате возбудимость увеличивается, но она остается ниже, чем в состоянии покоя
Периэлектротон — обратное изменение возбудимости вне электротонических областей.
В зоне прекращения действия катода возбудимость снижается.
В зоне прекращения влияний анода она, наоборот, увеличивается
При длительном прохождении постоянного тока через ткань происходит извращение измененной возбудимости
При длительном замыкании под катодом происходит:
·инактивация Na проницаемости
·повышение уровня критической деполяризации
·увеличение порога деполяризации
·снижение вначале повышенной возбудимости
Это явление получило название катодическая депрессия
При длительном замыкании под анодом происходит:
·снижение К проницаемости
·уровень критической деполяризации снижается
·порог деполяризации уменьшается
·повышается вначале сниженная возбудимость
Это явление получило название анодическая экзальтация
Этот закон необходимо учитывать в медицинской практике
С одной стороны, он может быть использован, если требуется заблокировать проведение возбуждения по нервной или мышечной ткани (катодическая депрессия) или повысить возбудимость (анодическая экзальтация)
С другой стороны, необходимо помнить о возможности привыкания к длительному действию раздражителей, в частности, фармацевтических препаратов, влияющих на возбудимость мембраны.
ФИЗИОЛОГИЯ МЫШЦ И НЕРВОВ
Структура миофибрилл и ее изменения при сокращении.Миофибриллы представляют собой сократительный аппарат мышечного волокна. В поперечнополосатых мышечных волокнахмиофибриллы-разделены на правильно чередующиеся участки (диски), обладающие разными оптическими свойствами. Одни участки анизотропны,т. е. обладают двойным лучепреломлением. В обыкновенном свете они ^выглядят темными, а. в поляризованномг— прозрачными в продольном направлении й непрозрачными в поперечном. Другие участки в Обыкновенной свете выглядят светлыми — они изотропны,т. е. не ; обладают двойным’ лучепреломлением (рис. 34, а) . Анизотропные участки обозначают буквой А,изотропные — буквой I.В середине диска Аразличается светлая полоска Н, посередине диска / — темная «полоска -представляющая собой тонкую мембрану, сквозь поры которой проходят миофибриллы. Благодаря наличию этой опорной структуры параллельно расположенные однозначные диски отдельных фибрилл внутри одного волокна во время сокращения не смещаются по,отношению друг к другу.
Современные представления о структуре миофибриллярного аппарата основываются на исследованиях структуры мышечного волокна-при помощи электронной микроскопии, рентгеноструктурного анализа, фазово-контрастной и интерференционной микроскопии в сочетании с гистохимическими методами.
Установлено, что каждая миофибрилла мышечного волокна диаметром около 1 мкм состоит в среднем из 2500 протофибрилл,представляющих собой удлиненные полимери-, зованные молекулы белков миозина и актина; Миозиновые протофибриллы, или, как, их принято обозначать, нити, вдвое толще актиновых. Их диаметр,примерно 10 нм. В состоянии покоя мышечного волокна нити расположены в миофибрилле таким образом, ^что тонкие длинные актиновые нити входят своими концами в промежутки между толстыми и более короткими миозиновыми нитями (рис. 34, б). Благодаря этому диски / состоят только из актиновых нитей, а диски А — из нитей миозина, а, возможно, еще и другого белка.
Рис. 34. Структура миофибриллы (схема), Показаны диски А и 1-полоски Zи Н(а). Взаимное расположение толстых (миозиновых) и тонких ; (актиновых) нитей в расслабленной (б) й сокращённой (в) миофибрилле.
Светлая полоска Н представляет собой узкую зону, свободную от актиновых нйтей. Мембрана Z,проходя через середину диска /, скрепляет,между собой эти Нити. Важным компонентом ультрамикроскопической-структуры миофибрилл являются также многочисленные поперечные мостики, .соединяющие между собой миозиновые и актиновые нити. При сокращений мышечного волокна указанные нити не укорачиваются, а начинают «скользить» друг по другу: актиновые нити вдвигаются в промежутки между миозиновыми, в результате чего диски / укорачиваются, а диски/1 сохраняют свой размер. Почти исчезает светлая полоска //, так как актиновые нити при сокращении сближаются друг с другом своими концами (рис. 34, в). Причиной «скольжения» является химическое взаимодействие между актином и миозином в присутствии ионов Са 2+ и АТФ. Наблюдается своегорода ч химическое «зубчатое колесо», как 6^,1 протягивающее одну Группу нитей по другой. Роль «зубчиков» в этом процессе приписывают поперечным мостикам, обеспечивающим взаимодействие активных центров белков миозиновых и актиновых нитей.
Это глобулярный белок, состоящий из одного полипептида, который полимеризуется с другими молекулами актина и образует две цепи, обвивающие друг друга (рис. 4-4 А). Такая двойная спираль представляет собой остов тонкого филамента. На каждой молекуле актина есть участок связывания миозина. В покоящемся мышечном волокне взаимодействие между актином и миозином предотвращают два белка — тропонин и тропомиозин (рис. 4-4 Б).
Тропомиозин — стержневидная молекула из двух полипептидов, обвивающихся друг около друга; молекула соответствует в длину примерно семи мономерам актина. Цепи из молекул тропомиозина, уложенные конец в конец, располагаются вдоль всего тонкого филамента. Молекулы тропомиозина частично прикрывают участки связывания каждой молекулы актина, мешая контакту миозина с актином. В таком блокирующем положении молекула тропомиозина удерживается тропонином.
Тропонин — гетеротримерный белок. Он состоит из тропонина Т (отвечает за связывание с одиночной молекулой тропомиозина), тропонина С (связывает ион Са 2+ ) и тропонина I (связывает актин и ингибирует сокращение). Каждая молекула тропомиозина связана с одной гетеротримерной молекулой тропонина, которая регулирует доступ к участкам связывания миозина на семи мономерах актина, прилегающих к молекуле тропомиозина.
Это единое название большой семьи протеинов, имеющих определенные отличия в клетках разных тканей. Миозин присутствует у всех эукариотов. Около 60 лет назад было известно два типа миозина, которые сейчас называют миозин I и миозин II. Миозин II был первым из числа открытых миозинов, и именно он принимает участие в мышечном сокращении. Позднее были открыты миозин I и миозин V (рис. 4-4 В). В последнее время показано, что миозин II участвует в мышечном сокращении, тогда как миозин I и миозин V вовлечены в работу подмембранного (кортикального) цитоскелета. В настоящее время идентифицировано более 10 классов миозина. На рисунке 4-4 Г показано два варианта схемы строения миозина, который состоит из головки, шейки и хвоста. Молекула миозина состоит из двух больших полипептидов (тяжелых цепей) и четырех меньших (легких цепей). Эти полипептиды составляют молекулу с двумя глобулярными «головками», которые содержат оба вида цепей, и длинным стержнем («хвостом») из двух переплетенных тяжелых цепей. Хвост каждой молекулы миозина располагается вдоль оси толстого филамента, а две глобулярные головки выступают по бокам, их иначе называют поперечными мостиками. На каждой глобулярной головке находятся по два участка связывания: для актина и для АТФ. Участки связывания АТФ обладают также свойствами фермента АТФазы, гидролизующей связанную молекулу АТФ.
Источник